机器学习的监督学习在研究什么

原创 2017年03月17日 20:05:08

什么是监督学习

简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。
这里写图片描述

监督学习核心思想

  • 所有可能的模型函数的集合称为假设空间,H={f|Y=f(X)}
  • 对于所有的模型函数集合,可能不知道是该用用逻辑回归模型、或贝叶斯模型、或神经网络模型还是用支持向量机模型。这个过程通常是一个不断迭代的过程,只有在不断地尝试比较才知道哪个模型比较好。
  • 假设选定一个模型f,对于输入X,预测值为f(X),预测值与Y可能存在差别,这个差别用损失函数L(Y,f(X))表示,而平均损失则称为经验风险,记为Remp(f)=1NNi=1L(yi,f(xi))
  • 为了得到最优的模型需要将经验风险最小化,minRemp(f),即 min1NNi=1L(yi,f(xi))
  • 当样本数较少时,有时会为了迎合经验风险最小化而导致过拟合现象,这时需要引入正则项,这也是符合奥卡姆剃刀原理。则变为Rsrm(f)=1NNi=1L(yi,f(xi))+λΩ(f),模型f越复杂,复杂度就越大,复杂度是对模型复杂程度的惩罚。

常见损失函数

  • 0-1损失函数
    L(Y,f(X))={1,0Y != f(X)Y = f(X)
  • 平方损失函数
    L(Y,f(X))=(Yf(X))2
  • 绝对损失函数L(Y,f(X))=|(Yf(X))|
  • 对数损失函数L(Y,P(Y|X))=logP(Y|X)

模型选择

  • 要怎么选择模型?怎样评判模型的好坏?这时就需要一些评判标准:训练误差和测试误差。
  • 训练误差,假设确定了一个模型f,训练误差就是训练数据集关于该模型f的平均损失,损失函数见上面。
  • 测试误差,假设确定了一个模型f,测试误差就是测试数据集关于该模型f的平均损失,损失函数见上面。
  • 关于过拟合问题,我们需要正则项λΩ(f)去抑制模型的复杂度,典型的正则化项可以使用模型f的参数向量的范数。
  • 通过上面策略可以得到最优的模型。
  • 另外方法是使用交叉验证,将样本预留一部分来检查不同模型的误差。

泛化能力

使用训练方法学习到的模型对未知数据的预测能力。一般通过泛化误差来评价一个模型的泛化能力,泛化误差越小,模型的泛化能力就越强。

欧卡姆剃刀原理

所有可能的模型中,能够很好地解释已知数据并且十分简单的才是最好的模型,从贝叶斯估计角度看,正则化项对应于模型的先验概率,负责的模型有较小的先验概率,简单的模型有较大的先验概率。

一句话

监督学习就是在正则化项约束下去寻找最小化误差的模型。

========广告时间========

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

欢迎关注:
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

TensorFlow训练单特征和多特征的线性回归

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。相关知识可看“相关阅读”。主要思想在TensorFlow中进行线性回归处理重点是将样本和样本特征矩阵化。单特征线性回...

机器学习之朴素贝叶斯分类

朴素贝叶斯分类所有贝叶斯分类都是基于贝叶斯定理,朴素贝叶斯分类是贝叶斯分类中运用广泛简单的一种,另外,它还基于特征条件独立假设。贝叶斯定理贝叶斯定理是计算条件概率的公式,条件概率即是事件B发生的前提下...

TensorFlow训练Logistic回归

Logistic回归在用线性模型进行回归训练时,有时需要根据这个线性模型进行分类,则要找到一个单调可微的用于分类的函数将线性回归模型的预测值关联起来。这时就要用到逻辑回归,之前看吴军博士的《数学之美》...

cisco上简单配置DHCP

这种简单的DCHP 在路由器和交换机上配置方法基本一样 思路: 1、先配置一个DHCP池 2、设置网段 3、配置默认网关 4、配置dns服务器地址 5、设置保留地址 其实配置上很简单...

Zookeeper总概

zookeeper是一个开源的分布式协调服务.是典型的分布式数据一致性的解决方案. zookeeper可以保证以下分布式一致性的特性 1. 顺序性:同一客户端发起的事务请求,最终会严格的按照发出顺...

谈谈谷歌word2vec的原理

word2vec在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。谷歌开源的word2...

【MOOC】Python机器学习应用-北京理工大学 - 【第二周】有监督学习

本周课程导学监督学习的目标利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射关系应用到未知数据上,达到分类或回归的目的。 分类:当输出是离散的,学习任务为分类任务。 回归:当输出是连续的,...

非监督学习之混合高斯模型和EM算法——Andrew Ng机器学习笔记(十)

0、内容提要这篇博文主要介绍: - 混合高斯模型(mixture of Gaussians model) - EM算法(Expectation-Maximization algorithm)1、引...

周志华 《机器学习》之 第十三章(半监督学习)概念总结

在前面章节中接触到的大部分都是监督学习方法以及无监督学习方法(聚类),这章讲述的半监督学习,我个人理解,应该是存在一部分标记样本,但是又不足以训练出一个良好性能的学习器,因此采用将其它未标记样本加入其...

机器学习笔记11——无监督学习之k-means聚类算法

无监督学习 k-means聚类算法 混合高斯模型 EM算法
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)