卷积神经网络

什么是卷积首先看卷积公式y(t)=f(t)∗g(t)=∫∞−∞f(u)g(t−u)duy(t)=f(t)*g(t)=\int_{-\infty} ^{\infty} f(u)g(t-u)du它是通过两个函数 f(t) 和 g(t) 来生成第三个函数的一种数学算子。从负无穷到正无穷遍历全部 u 值,把 g(t-u) 的值乘以 f(u) 的值之后再进行累加,得到关于该累加操作的关于 t 的函数。从另一...
阅读(745) 评论(0)

JVM层对jar包字节码加密

githubhttps://github.com/sea-boat/ByteCodeEncrypt需求拿到的需求是要对某特定的jar包实现加密保护,jar包需要提供给外部使用,但核心逻辑部分需要保护以免被简单反编译即能看到。几个思路大致想到以下几种方式: 1. 混淆器,将jar包混淆后反编译出来的东西看起来就很眼花,但如果耐心一点也是可以看出来的。 2. 对jar包进行加密,然后在Java层重写...
阅读(1966) 评论(5)

《Tomcat内核设计剖析》京东评论过百

到京东看了下《Tomcat内核设计剖析》评论都一百多了,上个月也第二次印刷了,这里看下好评、中评和差评。好评:中评对于中评,请看 为什么《写Tomcat内核设计剖析》,就当是回复吧。差评这个物流慢应该打给东哥。...
阅读(1303) 评论(0)

softmax的多分类

关于多分类我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。关于softmaxsoftmax的函数为P(i)=exp(θTix)∑Kk=1exp(θTkx)P(i)=\dfrac{exp(\theta_i^Tx)}{\sum_{k=...
阅读(1293) 评论(0)

Java调用本地方法又是怎么一回事

JNIJNI即Java Native Interface,它能在Java层实现对本地方法的调用,一般本地的实现语言主要是C/C++,其实从虚拟机层面来看JNI挺好理解,JVM主要使用C/C++ 和少量汇编编写,在执行Java字节码时如果遇到有某个方法标明为Native的则从JVM中找到对应的C/C++函数,一般本地方法对应的函数会被注册到JVM中。使用JNI能让Java与本地语言交互,但一般也意味着...
阅读(1646) 评论(2)

从JDK源码角度看Byte

Java的Byte类主要的作用就是对基本类型byte进行封装,提供了一些处理byte类型的方法,比如byte到String类型的转换方法或String类型到byte类型的转换方法,当然也包含与其他类型之间的转换方法。主要实现代码如下:public final class Byte extends Number implements Comparable { public stati...
阅读(1391) 评论(0)

神经网络的交叉熵损失函数

常见损失函数 0-1损失函数 L(Y,f(X))={1,0Y != f(X)Y = f(X)L(Y,f(X))=\begin{cases}1,& \text{Y != f(X)}\\0& \text{Y = f(X)}\end{cases} 平方损失函数 L(Y,f(X))=(Y−f(X))2L(Y,f(X))=(Y-f(X))^{2} 绝对损失函数L(Y,f(X))=|(Y−f(X))|L(Y...
阅读(1048) 评论(0)

为什么写《Tomcat内核设计剖析》

三四年前更多地还是做web业务开发,基本不关心web层以下的东西,但是每次出故障时面对现象都不能从脑子里形成由底层到应用层的完整的逻辑,往往只能分析到Web应用就无法继续往下,Web容器完全就是一个黑盒,对于问题更多的是靠猜。举个简单的例子,应用突然就不服务了,此时如果对Web容器模型熟悉就可以直接jstack打印虚拟机的栈进行分析。我个人接受不了这种用非完整性逻辑去分析事物的感觉,于是想着还是把T...
阅读(3209) 评论(2)

《Tomcat内核设计剖析》勘误表

《Tomcat内核设计剖析》勘误表 书中第95页图request部分印成了reqiest。 书中第311页两个tomcat3,其中一个应为tomcat4。 书中第5页URL应为URI。 书中前言第13行,借签应为借鉴。...
阅读(1123) 评论(2)

从JDK源码角度看Object

Java的Object是所有其他类的父类,从继承的层次来看它就是最顶层根,所以它也是唯一一个没有父类的类。它包含了对象常用的一些方法,比如getClass、hashCode、equals、clone、toString、notify、wait等常用方法。所以其他类继承了Object后就可以不用重复实现这些方法。这些方法大多数是native方法,下面具体分析。主要的代码如下:public class O...
阅读(2118) 评论(2)

kmeans实现文本聚类

需求拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。kmeans谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。...
阅读(919) 评论(0)

从JDK源码角度看Boolean

Java的Boolean类主要作用就是对基本类型boolean进行封装,提供了一些处理boolean类型的方法,比如String类型和boolean类型的转换。主要实现源码如下:public final class Boolean implements java.io.Serializable, Comparable { private final boolean value;...
阅读(1054) 评论(0)

[置顶] 开源一个文本分析项目

Githubhttps://github.com/sea-boat/TextAnalyzerTextAnalyzera text analizer that can analyze text. so far, it can extract hot words in a text segment by using tf-idf algorithm,at the same time using a sc...
阅读(1099) 评论(0)

谈谈Java基础数据类型

Java的基本数据类型 类型 意义 取值 boolean 布尔值 true或false byte 8位有符号整型 -128~127 short 16位有符号整型 -pow(2,15)~pow(2,15)-1 int 32位有符号整型 -pow(2,31)~pow(2,31)-1 long 64位有符号整型 -pow(2,63)~p...
阅读(1512) 评论(1)

怎么用弱引用实现内存泄漏检测

在Java中,引用分为强引用、软引用、弱引用和虚引用四种。 强引用,代码中普遍存在的形式,例如常见的普通类new出对象后的引用。GC不会回收强引用的对象。 软引用,软引用对象会在内存溢出异常之前进行回收,也就是说在内存富裕的情况下GC不回收软引用。它可通过SoftReference类实现。 弱引用,弱引用对象会在下一次GC时被回收,也就是说不管内存富不富裕,当GC时都会回收弱引用。它可通过WeakR...
阅读(641) 评论(0)

如何用机器学习对文本分类

需求使用监督学习对历史数据训练生成模型,用于预测文本的类别。样本清洗主要将重复的数据删除掉,将错误无效的数据纠正或删除,并检查数据的一致性等。比如我认为长度小于少于13的数据是无效的遂将之删掉。def writeFile(text): file_object = open('result.txt','w') file_object.write(text) file_object.c...
阅读(633) 评论(0)

注解的原理又是怎么一回事

Java内置的注解以及自定义一个注解大家都比较熟悉的了,现在来看看注解实现的原理,看看Java的体系下面是如何对注解的支持的。在讨论前先看一个自定义注解的例子,自定义实现这样一个注解:通过@Test向某类注入一个字符串,通过@TestMethod向某个方法注入一个字符串。① 创建Test注解,声明作用于类并保留到运行时,默认值为default。@Target({ElementType.TYPE})...
阅读(2978) 评论(3)

SBT构建工具

SBTSimple Build Tool. A interactive build tool.installwindows可直接到http://www.scala-sbt.org/0.13/docs/Installing-sbt-on-Windows.html下载安装,但网速实在是太慢,我这是直接用chocolatary管理软件,所以直接一个命令choco install sbt安装,很快。comm...
阅读(620) 评论(0)

机器学习之神经网络

多层神经网络前面说到的感知器是一种最基础的神经网络,他只有输入层和输出层,感知器只能处理线性可分问题,而对于非线性问题就需要多层神经网络。一般如下图所示,有多个层,比如左边的包含输入层、隐层和输出层,而右边的则包含了两个隐层。每层的神经元与下一神经元全互连,同层之间的神经元不会相连,输入层用于接收输入,经过隐层加工后再到输出层加工并输出。如何训练多层网络对于多层网络我们常用误差逆传播算法来训练,而我...
阅读(922) 评论(0)

如何对热词进行提取

热词简单地理解热词就是某文档中出现频率高的且非无用的词语。朴素的想法文档由若干词(term)组成,那么很朴素的想法就可以认为文档中某个term出现的次数越多就越可能是高频热词。这样的统计策略就叫Term Frequency,即TF。干扰项 标点符号,一般标点符号没有价值,去掉。 停词,停词没有特别的意义,一般也要去掉,比如“是”,“的”,”the”,”that”,”this”等。 词权重现在可能还存...
阅读(670) 评论(0)
288条 共15页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:858254次
    • 积分:11913
    • 等级:
    • 排名:第1327名
    • 原创:282篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏