开源一个简易轻量的reactor网络框架

githubhttps://github.com/sea-boat/net-reactornet-reactorit’s a simple and easy net framework with nio mode written by javareactor modelhow-tojust simply like:public class MyHandler implements Handler {...
阅读(2095) 评论(1)

机器学习之梯度下降法

方向导数如图,对于函数f(x,y),函数的增量与pp’两点距离之比在p’沿l趋于p时,则为函数在点p沿l方向的方向导数。记为$\frac{\partial f}{\partial l} = \lim_{\rho \rightarrow 0} \frac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\rho } $,其中$\rho=\sqrt{(\Delta x)^{2} + (...
阅读(923) 评论(0)

《奇点临近》奇点和六大纪元

“我认为没有任何一种对人类心灵的冲击能够比得上一位发明家亲眼看到自己的脑力创作变成现实” ———尼古拉·特斯拉思想的力量,一个人拥有独立的思想是多么的重要。奇点奇点是未来的某个技术变革节奏相当快的时期,人类的生活将不可避免地因此发生变化,它所带来影响是如此的深远。它将人类信仰转变为声明能理解的意义,将事物模式本身转变为人类生命的循环。奇点思维下会对过去发生的事情的重要性重新审...
阅读(490) 评论(0)

[置顶] 机器学习的监督学习在研究什么

什么是监督学习简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。 监督学习核心思想 所有可能的模型函数的集合称为假设空间,$H=\left \{ f|Y=f(X) \right \}$。 对于所有的模型函数集合,可能不知道是该用用逻辑回归模型、或贝叶斯模型、或神经网络模型还是用支持向量机模型。这个过程通常是一个不断迭代的过程,只有在不断地尝试比较才...
阅读(2154) 评论(0)

设计一个智能客服系统

背景:最近在设计一个公司的智能客服系统,通过对现有人工客服语料作为样本,通过训练样本完成整个QA过程或业务办理过程。整体思路 AliceBot负责闲聊,这里用了开源的语料,也可以添加语料到DB,基于AIML。 AbilityBot主要负责公司业务上的咨询和办理,它提供了不同的能力接口,供外系统交互。 predict模块用于预测响应。 train模块用于训练客服对话样本。 语音转换由第三方语音识别服务...
阅读(3180) 评论(0)

机器学习之层次聚类

层次聚类聚类是将样本进行归类形成K个簇,层次聚类是其中的一种方法。它将数据组成一棵聚类树,过程可以是凝聚形式或分裂形式。核心思想凝聚是一开始将每个样本当做一个聚类,接着通过计算将距离最近的两个聚类合并,成为新聚类,每次合并聚类总数减少一个,不断循环合并操作,直到所有聚类合并成一个聚类或当聚类数量到达某预定值或当聚类直接距离达到某阀值后停止合并。而分裂则与凝聚相反,一开始将所有样本当做一个聚类,每次分...
阅读(1515) 评论(0)

k-means聚类算法

聚类聚类主要内容是将样本进行归类,同种类别的样本放到一起,所有样本最终会形成K个簇,它属于无监督学习。核心思想根据给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。数学上可以证明k-means是收敛的。 伪代码随机选择k个质...
阅读(2053) 评论(0)

线性回归之最小二乘法

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。最小二乘法线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。最常用的方法便是最小二乘法,它是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。代数推导: 假设拟合直线为y=ax+by=ax+b 对任意样本点(xi,yi)(x_i,y_i) 误差为e=yi−(axi+b)e=y_i-(ax_i+...
阅读(934) 评论(0)
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:866605次
    • 积分:12009
    • 等级:
    • 排名:第1314名
    • 原创:284篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏