机器学习之k近邻

核心思想KNN算法假设给定的训练集中的实例都已经分好类了,对于新的实例,根据离它最近的k个训练实例的类别来预测它的类别。即这k个实例大多数属于某个类别则该实例就属于某个类别。比如k为5,离新实例a最近的5个样本的情况为,3个样本属于A类,1个样本属于B类,一个样本属于C类,那么新实例a属于A类。常用距离 欧氏距离 d(x,y)=∑ni=1(xi−yi)2−−−−−−−−−−−−√d(x,y) =...
阅读(811) 评论(0)

TensorFlow训练Logistic回归

Logistic回归在用线性模型进行回归训练时,有时需要根据这个线性模型进行分类,则要找到一个单调可微的用于分类的函数将线性回归模型的预测值关联起来。这时就要用到逻辑回归,之前看吴军博士的《数学之美》中说腾讯和谷歌广告都有使用logistics回归算法。如下图,可以清晰看到线性回归和逻辑回归的关系,一个线性方程被逻辑方程归一化后就成了逻辑回归。.Logistic模型对于二分类,输出y∈{0,1}y...
阅读(3336) 评论(0)

TensorFlow训练单特征和多特征的线性回归

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。相关知识可看“相关阅读”。主要思想在TensorFlow中进行线性回归处理重点是将样本和样本特征矩阵化。单特征线性回归单特征回归模型为:y=wx+by = wx + b构建模型X = tf.placeholder(tf.float32, [None, 1]) w = tf.Variable(tf.zeros([1,...
阅读(1697) 评论(0)

机器学习之朴素贝叶斯分类

朴素贝叶斯分类所有贝叶斯分类都是基于贝叶斯定理,朴素贝叶斯分类是贝叶斯分类中运用广泛简单的一种,另外,它还基于特征条件独立假设。贝叶斯定理贝叶斯定理是计算条件概率的公式,条件概率即是事件B发生的前提下事件A发生的概率,记作$P(A|B)$,叫做事件B发生的情况下A的条件概率。公式为:$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$公式大致推导: 如图,有$P(A|B) = \f...
阅读(1695) 评论(0)

全文搜索怎么给查询语句与文档相关性打分

朴素想法用户输入一个查询query,query由若干词(term)组成,文档也由若干词(term)组成。那么怎么评判查询和文档的相关性的高低。很朴素简单的想法就是文档中包含的term与查询query中包含的term,两者越多相同的则说明越相关。比如query为”animal cat”,文档一内容为”cat dog bird animal”,文档二内容为”cat dog bird tiger”,则认为...
阅读(2171) 评论(0)
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:865717次
    • 积分:11999
    • 等级:
    • 排名:第1329名
    • 原创:284篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏