[置顶] 如何用TensorFlow训练聊天机器人(附github)

前言实际工程中很少有直接用深度学习实现端对端的聊天机器人,但这里我们来看看怎么用深度学习的seq2seq模型来实现一个简易的聊天机器人。这篇文章将尝试使用TensorFlow来训练一个基于seq2seq的聊天机器人,实现根据语料库的训练让机器人回答问题。seq2seq关于seq2seq的机制原理可看之前的文章《深度学习的seq2seq模型》。循环神经网络在seq2seq模型中会使用到循环神经网络,目...
阅读(9854) 评论(12)

Java安全管理器

总的来说,Java安全应该包括两方面的内容,一是Java平台(即是Java运行环境)的安全性;二是Java语言开发的应用程序的安全性。由于我们不是Java本身语言的制定开发者,所以第一个安全性不需要我们考虑。其中第二个安全性是我们重点考虑的问题。一般我们可以通过安全管理器机制来完善安全性,安全管理器SecurityManager是安全的实施者,可对此类进行扩展,它提供了加在应用程序上的安全措施,通过...
阅读(583) 评论(0)

隐马尔可夫模型的Viterbi解码算法

前言前面在做自然语言处理时涉及到一些词性标注的工作,一般会使用隐马尔科夫模型(HMM)来实现词性标注,而HMM模型的解码实现算法一般就会使用Viterbi算法。关于穷举法HMM模型有多种应用,这里说的是其中一个常见应用,即根据观察序列找到最可能的隐含状态序列。最朴素的想法就是直接穷举所有可能的隐含状态序列,并计算出每个组合成的状态序列的概率,概率最大的那个组合序列即是最可能的隐含状态序列。举个水藻和...
阅读(626) 评论(0)

从JDK源码角度看Long

概况Java的Long类主要的作用就是对基本类型long进行封装,提供了一些处理long类型的方法,比如long到String类型的转换方法或String类型到long类型的转换方法,当然也包含与其他类型之间的转换方法。除此之外还有一些位相关的操作。继承结构--java.lang.Object --java.lang.Number --java.lang.Long主要属性public s...
阅读(3063) 评论(3)

TensorFlow实现seq2seq

前言前面在《深度学习的seq2seq模型》文章中已经介绍了seq2seq结构及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个seq2seq网络结构,该例子能通过训练给定的训练集实现输入某个序列输出某个序列,其中输入序列和输出序列相同,这里选择使用LSTM模型。训练样本集为方便起见这里使用随机生成的序列作为样本,序列的长度也是随机的且在指定的范围内。LSTM机制原理关于LSTM机制原理...
阅读(834) 评论(0)

volatile足以保证数据同步吗

在讨论之前必须先搞清四种存储介质:寄存器、高级缓存、RAM和ROM。RAM与ROM大家都比较熟悉了,可以看成是我们经常说的内存与硬盘,寄存器属于处理器里面的一部分,而高级缓存cache是CPU设计者为提高性能引入的一个缓存,也可以说是属于处理器的一部分。在利用CPU进行运算时必定涉及操作数的读取,假如CPU直接读取ROM,那么这个读取速度简直是无法忍受的,于是引入了内存RAM,这样做确实让速度提高了...
阅读(1204) 评论(0)

深度学习的seq2seq模型

从rnn结构说起根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合。如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景。 one to many 结构,给一个输入得到一系列输出,这种结构可用于生产图片描述的场景。 many to one 结构,给一系列输入得到一个输出,这种结构可用于文本情感分析,对一...
阅读(1143) 评论(0)

从ASCII聊起

在互联网的世界,端与端之间传递的报文都是未经过编码的字节流,每8位组成1个字节,计算机以二进制为基础,这是由于使用晶体管的开合状态表示1和0,这样8个电晶体管就可以组成一个字节,这正是应用层使用的最小单位——字节。在通过Socket进行网络通信的程序中,假如我们在接收到报文时不知道通过什么编码才能正确解码,最好的办法就是用Socket读取字节流,在确认编码后再对这些字节流进行转码,否则产生解码错误。...
阅读(461) 评论(0)
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:866608次
    • 积分:12009
    • 等级:
    • 排名:第1314名
    • 原创:284篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏