强化学习

前言机器学习可以大致分为四类: 监督学习 无监督学习 半监督学习 强化学习 监督学习是利用标记了的样本进行学习,无监督学习则是使用未标记的样本进行学习,这两个是我们最常见的。半监督学习则是样本中只有少量带标记的样本,多数样本都未标记,利用这些样本进行学习。强化学习则是很不同的一种学习方式,它没有规则的训练样本和标签,主要通过奖励和惩罚达到学习的目的。什么是强化学习《最强大脑》曾经有个挑战项目叫蜂巢迷...
阅读(259) 评论(0)

从JDK源码看System.exit

前言在编写的Java程序中有时会遇到用 System.exit 来关闭JVM,其中调用 exit 方法时会包含一个状态参数n,即System.exit(n)。这其实是一个约定值,如果为0则表示正常关闭,而非0则表示非正常关闭。这里我们从JDK源码看下不同状态都是怎么处理的。System与Runtime先看System类的exit方法如下,可以看到它是间接调用了Runtime对象的exit方法。pub...
阅读(407) 评论(0)

深度学习的Attention模型

前言前面看到谷歌发表的运用在机器翻译上的论文《Attention is all you need》,很是让人惊讶,这是一种全新的模型,与之前的经典的seq2seq模型改动较大,它完全摒弃了RNN或CNN神经网络,大大简化了模型的复杂度,而且效果还相当好。当然Attention模型可以单独使用,但这篇文章我们来看看Attention的机制及怎么与经典的seq2seq结合。seq2seq前面我们有详细的...
阅读(1195) 评论(1)

从JDK源码角度看Float

关于IEEE 754在看Float前需要先了解IEEE 754标准,该标准定义了浮点数的格式还有一些特殊值,它规定了计算机中二进制与十进制浮点数转换的格式及方法。规定了四种表示浮点数值的方法,单精确度(32位)、双精确度(64位)、延伸单精确度(43位以上)与延伸双精确度(79位以上)。多数编程语言支持单精确度和双精确度,这里讨论的Float就是Java的单精确度的实现。浮点数的表示浮点数由三部分组...
阅读(466) 评论(0)
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:862243次
    • 积分:11956
    • 等级:
    • 排名:第1323名
    • 原创:283篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏