计算机与数学的关系

原创 2007年09月27日 10:43:00

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分
支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动
数学发展,从某种意义上可以说是孩子长得比妈妈还高了。

但不管怎么样,这个孩子身上始终流着母亲的血液。这血液是the mathematical underpi
nning of computer science(计算机科学的数学基础),-- 也就是理论计算机科学。


现代计算机科学和数学的另一个交叉是计算数学/数值分析/科学计算,传统上不包含在理
论计算机科学以内。所以本文对计算数学全部予以忽略。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密
切,以至于它们在不少场合下成为同义词。


传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复
变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程
上应用的,也以分析为主。


随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这
些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分
,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计
算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以
分析为中心的传统数学分支被相对称为“连续数学”。

离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:


1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。


2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是
算法,而大量的算法建立在图和组合的基础上。


3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶
地发现代数竟然有如此之多的应用。

但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大
约十几年前,终于有一位大师告诉我们:不是。


D.E.Knuth(他有多伟大,我想不用我废话了)在Stanford开设了一门全新的课程Concrete
Mathematics。 Concrete这个词在这里有两层含义:


第一,针对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题
关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些
数学。为了直接面向应用的需要,他要提倡“具体”的数学。


在这里我做一点简单的解释。例如在集合论中,数学家关心的都是最根本的问题--公理系
统的各种性质之类。而一些具体集合的性质,各种常见集合,关系,映射都是什么样的,
数学家觉得并不重要。然而,在计算机科学中应用的,恰恰就是这些具体的东西。Knuth能
够首先看到这一点,不愧为当世计算机第一人。


第二,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,
都是有用的数学!
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域
包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并
行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相
交叉,而且新的课题在不断提出,所以很难理出一个头绪来。

下面随便举一些例子。


由于应用需求的推动,密码学现在成为研究的热点。密码学建立在数论(尤其是计算数论)
,代数,信息论,概率论和随机过程的基础上,有时也用到图论和组合学等。


很多人以为密码学就是加密解密,而加密就是用一个函数把数据打乱。这就大错特错了。
现代密码学至少包含以下层次的内容:


第一,密码学的基础。例如,分解一个大数真的很困难吗?能否有一般的工具证明协议正
确?


第二,密码学的基本课题。例如,比以前更好的单向函数,签名协议等。


第三,密码学的高级问题。例如,零知识证明的长度,秘密分享的方法。


第四,密码学的新应用。例如,数字现金,叛徒追踪等。

现代社会科学技术高速发展,数学学科的发展也已经到了非常抽象的地步,但是计算机所应用的数学依然是之前的经典东西,怎么样学好数学,通过计算机这个平台用好数学,将计算引入世界的每一个角落,无时无可得都在运算,用于提高人类的生活质量,这将是我们计算机学科从业人员的终极目的和追求。
 

组合数学(原书第4版)——计算机科学丛书.pdf

  • 2013年12月10日 19:01
  • 41.95MB
  • 下载

计算机视觉的数学基础

本文转载高博士的博客 主要介绍了在计算机视觉中关于3D变换矩阵的数学方法。 旋转矩阵是一种3×3的正交矩阵, 这里R为3D的旋转矩阵,同样的,t为3D的平移矢量。 由于3D旋转都可以归结...
  • chuhang_zhqr
  • chuhang_zhqr
  • 2016年03月22日 14:30
  • 3077

数学归纳法的计算机实现——递归

数学归纳法 数学归纳法(mathematical induction)是一种数学证明方法,常用于证明命题在自然数范围内成立。随着现代数学的发展,自然数范围内的证明实际上构成了许多其他领域(比如数...
  • peive
  • peive
  • 2014年04月10日 14:30
  • 424

计算机与数学

一位计算机牛人的心得,谈计算机和数学      转一位计算机牛人的心得,谈到计算机和数学,很实用~ 计算机科学与技术反思录    计算机科学与技术这一门科学深深的吸引着我们这些同学们,上计算机系已经有...
  • LoveJiaYu
  • LoveJiaYu
  • 2017年01月06日 11:52
  • 644

数学之美笔记1

不同的文字系统在记录信息上的能力是等价d
  • yang090510118
  • yang090510118
  • 2014年09月07日 22:51
  • 540

计算机与经济学:天造地设的一对

计算机与经济学有啥关系?IT男与金融妹有啥关系?你知道吗?或者在金融行业做软件开发N年的你考虑过这个问题吗?在只学计算机专业课之前,我也不知道,可是学了经济学的部分专业课之后,我开始考虑这个问题,下面...
  • Tendency_Yang
  • Tendency_Yang
  • 2016年06月14日 11:09
  • 1619

[五年困惑] 从数学到计算机 从莱布尼兹到冯诺依曼 从数理逻辑到算法分析

序:从2010年进入大学接触到计算机开始,便不断对其本源好奇,接触得愈久就愈是觉得这门学科当真博大精深、美妙又繁复,纵其一生也难穷究竟。以下为一段时间内(2010 ~ 2015.09.28)探索的简略...
  • lanonjj
  • lanonjj
  • 2016年05月20日 22:27
  • 1036

Round Numbers--杨辉三角,组合数学

转载地址:http://www.cnblogs.com/lyy289065406/archive/2011/07/31/2122758.html 大致题意: 输入两个十进制正整数a和b,求闭区间 [a...
  • bless924295
  • bless924295
  • 2016年08月18日 21:35
  • 298

《计算机视觉中的数学方法》

2015-11-30         过了好久我才来补充的记录一下学习的感受。我从年初开始准备CV的学习材料的时候就查到了这本书。起初,我看这本书是国内的人写的,感觉其可能没有国外著名大学的教...
  • cloudqiu
  • cloudqiu
  • 2017年02月10日 14:01
  • 1307

计算机可以做推理逻辑吗?

【作者:吴斌,原文创作于2016-04-20,如今仍有较高参考价值,但不排除部分信息需要更新。文中有很多引用,不一一列举出处了。】 计算机(主要指人工智能AI)能不能做推理逻辑?这个问题...
  • Cloud_Architect
  • Cloud_Architect
  • 2017年06月05日 14:10
  • 460
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:计算机与数学的关系
举报原因:
原因补充:

(最多只允许输入30个字)