题目大意:给定一个数n,问你从1--n之中有多少个数含有49这个子串,1-50中就只有49符合条件。
解题思路:因为是初学数位dp,这是自己根据模板写的第一道题,我设计的dp[i][j]表示的含义是i位数字,并且他的前一位是数字j,从1-这个数字中不包含49字串的个数。具体可以参考代码。
这里简单介绍一下我所了解的数位dp,所谓数位dp,无非就是根据每一位数字的情况来进行判断。一般题目中会要求你计算从1--n中满足某种某种规则的数字个数,所以可以采用逐位判断的方法。
我比较喜欢dfs的写法,个人认为比较好理解。有必要提一下这种写法里面为什么要区分是否是上界,再选择是否记录下结果,有两个原因,一般上界的结果只会被利用一次,无需保存,而且上界计算的规则也与其他情况不同。所以要区分记录。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 20;
ll n;
ll dp[maxn][10], bit[maxn];
ll dfs(int pos,int pre,int limit)//pos数字位数,pre当前数位前一位的数字,limit判断是否是边界条件
{
if(pos < 1) return 1;//如果顺利搜索到了第零位,说明这个数满足条件,返回1
if(!limit && dp[pos][pre] != -1) return dp[pos][pre];//记忆化搜索的关键
ll ret = 0;
int len = limit?bit[pos]:9;//如果处于非上界状态下,数字可以枚举0-9,处于上界状态则需要考虑给出的上界在该位的数字
for(int i = 0; i <= len; i++)
{
if(pre==4 && i==9) continue;//如果包含了49,则可以跳过这一分支
ret += dfs(pos-1, i, limit&&i==len);
}
if(!limit) dp[pos][pre] = ret;
return ret;
}
ll solve(ll n)//预处理函数,将所给定的数字,处理为每个位置上的数字(上界)
{
int len = 0;
while(n)
{
bit[++len] = n%10;
n /= 10;
}
return dfs(len, 0, 1);
}
int main()
{
int t;
scanf("%d", &t);
memset(dp, -1, sizeof(dp));
while(t--)
{
cin>>n;
printf("%I64d\n",n+1-solve(n));
}
return 0;
}