[最小生成树] 蓝桥杯 城市建设

题意:

n个城市,m条边。额外的是,每个城市还可以建码头。

如果两个城市都有码头,则这两个城市可以互相到达。

求最小生成树。

思路:

对于码头,可以把所有码头都连到一个0点,代价是建码头的费用。

这时候就跑两遍,一遍是有码头的情况,第二遍没有码头。

这样的话就一个问题,就是如果没有码头的话,道路会不会都联通。

然后还要注意,负数的道路是必须连的,这样费用更小!

代码:

#include"stdio.h"
#include"algorithm"
#include"string.h"
#include"iostream"
#include"queue"
#include"map"
#include"string"
#define mod 1000000007
using namespace std;
struct node
{
    int x,y,s;
} edge[123456];
int pre[12345];
int cmp(node a,node b)
{
    return a.s<b.s;
}
int finde(int x)
{
    return x!=pre[x]?pre[x]=finde(pre[x]):x;
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=-1)
    {
        for(int i=0; i<=n; i++) pre[i]=i;
        for(int i=0; i<m; i++) scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].s);
        for(int i=m; i<n+m; i++)
        {
            edge[i].x=0;
            edge[i].y=i-m+1;
            scanf("%d",&edge[i].s);
            if(edge[i].s==-1) edge[i].s=-19999;
        }
        sort(edge,edge+n+m,cmp);
        int ans=0,ans2=0;
        for(int i=0; i<n+m; i++)
        {
            if(edge[i].s==-19999) continue;
            int f1=finde(edge[i].x);
            int f2=finde(edge[i].y);
            if(f1!=f2)
            {
                ans+=edge[i].s;
                pre[f1]=f2;
            }
            else if(edge[i].s<0) ans+=edge[i].s;
        }
        for(int i=0; i<=n; i++) pre[i]=i;
        for(int i=0; i<n+m; i++)
        {
            if(edge[i].x==0) continue;
            int f1=finde(edge[i].x);
            int f2=finde(edge[i].y);
            if(f1!=f2)
            {
                ans2+=edge[i].s;
                pre[f1]=f2;
            }
            else if(edge[i].s<0) ans2+=edge[i].s;
        }
        int sum=0;
        for(int i=1;i<=n;i++) if(pre[i]==i) sum++;
        if(sum!=1) printf("%d\n",ans);
        else printf("%d\n",min(ans,ans2));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值