题意:
n个城市,m条边。额外的是,每个城市还可以建码头。
如果两个城市都有码头,则这两个城市可以互相到达。
求最小生成树。
思路:
对于码头,可以把所有码头都连到一个0点,代价是建码头的费用。
这时候就跑两遍,一遍是有码头的情况,第二遍没有码头。
这样的话就一个问题,就是如果没有码头的话,道路会不会都联通。
然后还要注意,负数的道路是必须连的,这样费用更小!
代码:
#include"stdio.h"
#include"algorithm"
#include"string.h"
#include"iostream"
#include"queue"
#include"map"
#include"string"
#define mod 1000000007
using namespace std;
struct node
{
int x,y,s;
} edge[123456];
int pre[12345];
int cmp(node a,node b)
{
return a.s<b.s;
}
int finde(int x)
{
return x!=pre[x]?pre[x]=finde(pre[x]):x;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=-1)
{
for(int i=0; i<=n; i++) pre[i]=i;
for(int i=0; i<m; i++) scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].s);
for(int i=m; i<n+m; i++)
{
edge[i].x=0;
edge[i].y=i-m+1;
scanf("%d",&edge[i].s);
if(edge[i].s==-1) edge[i].s=-19999;
}
sort(edge,edge+n+m,cmp);
int ans=0,ans2=0;
for(int i=0; i<n+m; i++)
{
if(edge[i].s==-19999) continue;
int f1=finde(edge[i].x);
int f2=finde(edge[i].y);
if(f1!=f2)
{
ans+=edge[i].s;
pre[f1]=f2;
}
else if(edge[i].s<0) ans+=edge[i].s;
}
for(int i=0; i<=n; i++) pre[i]=i;
for(int i=0; i<n+m; i++)
{
if(edge[i].x==0) continue;
int f1=finde(edge[i].x);
int f2=finde(edge[i].y);
if(f1!=f2)
{
ans2+=edge[i].s;
pre[f1]=f2;
}
else if(edge[i].s<0) ans2+=edge[i].s;
}
int sum=0;
for(int i=1;i<=n;i++) if(pre[i]==i) sum++;
if(sum!=1) printf("%d\n",ans);
else printf("%d\n",min(ans,ans2));
}
return 0;
}