Hadoop实践(三)---MapReduce编程 小技巧

本文探讨了MapReduce程序效率的关键因素——磁盘和网络I/O,并分享了三个实用技巧:1) 如何在MapReduce中省略Key输出以减少I/O;2) 使用GenericOptionsParser处理命令行参数,包括传递第三方库和自定义参数;3) 实现Tool接口,优化标准命令行选项处理。这些策略有助于降低开销,提高MapReduce作业的效率。

影响大多数MapReduce程序效率的主要瓶颈是磁盘网络I/O

使用Mapper去执行部分计算,可以有效减少Mapper和Reducer之间的I/O开销。相较于将全部输入传输给Reducer,并执行计算任务,这样的开销是非常小的,在MapReduce开发中,需要考虑这些问题,以降低开销,提高效率。

1、在MapReduce中输出时,如何不输出Key值?

NullWritable.get()方法

当Mapper和Reducer的输出类型相同的时候,只需要设置这2个就可以了:

 job.setOutputKeyClass(NullWritable.class);
 job.setOutputValueClass(Text.class);

当Mapper和Reducer输出类型不同时,需要分别设置:

 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setOutputKeyClass(NullWritable.class);
 job.setOutputValueClass(Text.class);

2、GenericOptionsParser的用法

使用GenericOptionsParser将命令参数传递给作业:

  • 使用-libjars <comma separated jar paths(逗号分隔的jar路径)>传递第三方库
  • 使用-D <name> = <value>传递自定义的命令参数
new GenericOptionsParser(getConf(),args).getRemainingArgs();

在本例中,会返回包含输入输出路径的数组

3、实现Tool接口

Tool接口支持处理通用命令行选项

Tool是任何Map-Reduce工具/应用程序的标准。 工具/应用程序应该将标准命令行选项的处理委托给ToolRunner.run(Tool,String []),并且仅处理其自定义参数。

以下是典型工具的实现方式:

   public class MyApp extends Configured implements Tool {

       public int run(String[] args) throws Exception {
         // Configuration processed by ToolRunner
         Configuration conf = getConf();

         // Create a JobConf using the processed conf
         JobConf job = new JobConf(conf, MyApp.class);

         // Process custom command-line options
         Path in = new Path(args[1]);
         Path out = new Path(args[2]);

         // Specify various job-specific parameters     
         job.setJobName("my-app");
         job.setInputPath(in);
         job.setOutputPath(out);
         job.setMapperClass(MyMapper.class);
         job.setReducerClass(MyReducer.class);

         // Submit the job, then poll for progress until the job is complete
         JobClient.runJob(job);
         return 0;
       }

       public static void main(String[] args) throws Exception {
         // Let ToolRunner handle generic command-line options 
         int res = ToolRunner.run(new Configuration(), new MyApp(), args);

         System.exit(res);
       }
     }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值