第33章 :计算几何学

原创 2016年05月30日 19:56:50

一:判定给定的两条线段是否相交:

当两条线段的四个点p1,p2,p3,p4给定时,如下的代码能够判断线段p1p2与线段p3p4是否相交,如果相交则返回true,否则返回false;

//pair<double,double>第一个元素存储坐标点的x坐标,第二个元素存储坐标点的y坐标
using point=pair<double,double>;
// 计算矢量(pk-pi)与矢量(pj-pi)的叉乘
inline int direction(const point& pi,const point& pj,const point& pk)
{
        return (pk.first-pi.first)*(pj.second-pi.second)-(pj.first-pi.first)*(pk.second-pi.second);

}

//在矢量(pk-pi)与矢量(pj-pi)的叉乘为0的基础上,判断点pk是否在线段pipj上,如果在的话返回true,否则返回false;
inline bool on_segment(const point& pi,const point& pj,const point& pk)
{
        return min(pi.first,pj.first)<=pk.first&&pk.first<=max(pi.first,pj.first)&&min(pi.second,pj.second)<=pk.second&&pk.second<=max(pi.second,pj.second);
}

//判断线段p1p2是否与线段p3p4相交,相交返回true,不相交返回false;
bool segment_intersect(const point& p1,const point& p2,const point& p3,const point& p4)
{
        int d1=direction(p3,p4,p1);
        int d2=direction(p3,p4,p2);
        int d3=direction(p1,p2,p3);
        int d4=direction(p1,p2,p4);

        if(((d1>0&&d2<0)||(d1<0&&d2>0))&&((d3>0&&d4<0)||(d3<0&&d4>0)))
                return true;
        else if(d1==0&&on_segment(p3,p4,p1))
                return true;
        else if(d2==0&&on_segment(p3,p4,p2))
                return true;
        else if(d3==0&&on_segment(p1,p2,p3))
                return true;
        else if(d4==0&&on_segment(p1,p2,p4))
                return true;
        else
                return false;
}

二:寻找最近点对:

假设有一个xy平面上的点列P,点与点之间的距离定义为欧几里得距离,现在要求出一对最近的点。

1:表示点的坐标的代码如下:

//
struct point{
        double xval;
        double yval;
};

2: 计算点与点之间欧几里得距离:

inline double distance(point p1,point p2)
{
        return sqrt((p1.xval-p2.xval)*(p1.xval-p2.xval)+(p1.yval-p2.yval)*(p1.yval-p2.yval));
}

3:用暴力搜索法求出点对的最近距离:

double shortestDistanceEnumeration(vector<point>& xvalSort)
{
        double MinDistance=DBL_MAX;

        for(int i=0;i!=xvalSort.size();++i)
                for(int j=i+1;j!=xvalSort.size();++j)
                        if(distance(xvalSort[j],xvalSort[i])<MinDistance)
                                MinDistance=distance(xvalSort[j],xvalSort[i]);

        return MinDistance;
}

4:用分治算法求出点对的最近距离,输入xvalSort表示的是一系列以x坐标值从小到大排序的点,yvalSort表示的是一些列以y坐标值从小到大排序的点,当然这两个集合中点集是一样的,只是将它们排序的方法不一样,一个是按x值排序,另外一个是按y值排序:

double shortestDistance(vector<point>& xvalSort,vector<point>& yvalSort)
{
        if(xvalSort.size()<=10)
                return shortestDistanceEnumeration(xvalSort);

        vector<point> xvalSortLeft;
        vector<point> xvalSortRight;
        vector<point> yvalSortLeft;
        vector<point> yvalSortRight;

        double mediumXval=(xvalSort[0].xval+xvalSort[xvalSort.size()-1].xval)/2;
        for(int i=0;i!=xvalSort.size();++i)
        {
                if(xvalSort[i].xval<=mediumXval)
                        xvalSortLeft.push_back(xvalSort[i]);
                else
                        xvalSortRight.push_back(xvalSort[i]);
        }

        for(int i=0;i!=yvalSort.size();++i)
        {
                if(yvalSort[i].xval<=mediumXval)
                        yvalSortLeft.push_back(yvalSort[i]);
                else
                        yvalSortRight.push_back(yvalSort[i]);
        }

        if(xvalSortRight.size()==0)
                return shortestDistanceEnumeration(xvalSortLeft);
        else if(xvalSortRight.size()==1){
                xvalSortLeft.push_back(xvalSortRight[0]);
                yvalSortLeft.push_back(xvalSortRight[0]);
                return shortestDistanceEnumeration(xvalSortLeft);
        }

        double leftMin=shortestDistance(xvalSortLeft,yvalSortLeft);
        double rightMin=shortestDistance(xvalSortRight,yvalSortRight);

        double Min=leftMin<=rightMin?leftMin:rightMin;
        vector<point> pointsInStrip;
        for(int i=0;i!=yvalSort.size();++i)
                if((mediumXval-Min)<=yvalSort[i].xval&&yvalSort[i].xval<=(mediumXval+Min))

        const int lowestPointNumInStrip=2;
        if(pointsInStrip.size()>=lowestPointNumInStrip){
                for(int i=0;i!=pointsInStrip.size();++i)
                        for(int j=i+1;j!=pointsInStrip.size();++j)
                                if(Min<pointsInStrip[j].yval-pointsInStrip[i].yval)
                                        break;
                                else{
                                        if(distance(pointsInStrip[j],pointsInStrip[i])<Min)
                                                Min=distance(pointsInStrip[j],pointsInStrip[i]);
                                }
        }

        return Min;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

算法导论33(计算几何学)

1.叉积 p1×p2=x1*y2-x2*y1=-p2×p12.确定连续线段是向左转还是向右转3.判断两条线段是否相交struct point { int x,y; };int directi...
  • hz5034
  • hz5034
  • 2015年05月21日 21:01
  • 722

《算法导论》笔记汇总

《算法导论》笔记汇总 http://mindlee.net/2011/08/21/study-notes-directory/ 分类:ACM历程,算法学习 | 作者:酷~行天下 | 发表于20...
  • chao1983210400
  • chao1983210400
  • 2013年08月29日 15:17
  • 1156

周志华 《机器学习》之 第十二章(计算学习理论)概念总结

看到12章,题目叫计算学习理论,当时一萌,这是干什么用的呢?前面的章节中基本都是讲述了一些机器学习的一些常用方法。看到这个标题我的第一反应应该是理论方面的研究,那是否对计算与学习这两方面的理论研究呢?...
  • lixianjun913
  • lixianjun913
  • 2016年08月30日 10:28
  • 599

计算思维实践之路(四)

在计算机的法则里,计算思维重于一切。大部分人一开始就把自己束缚在一张乏味的语法清单上,久而不入其门,何不一开始就沿着计算思维对程序进行理解,在不断尝试中寻求着转化的灵感。...
  • zwszws
  • zwszws
  • 2016年07月29日 18:22
  • 218

算法导论之计算几何学

计算几何学是计算机科学的一个分支,专门研究集合问题的解决的算法。计算几何学的问题一般输入关于一组集合对象的描述,如一组点、一组线段;输出是对问题的回答,如直线是否相交。三维空间和高维空间很难视觉化,这...
  • fjssharpsword
  • fjssharpsword
  • 2016年12月07日 09:33
  • 2288

lua程序设计第二版 读书笔记(5-8章)

书本下载地址                       http://download.csdn.net/detail/myy2012/5349646 本部分下载地址               ...
  • myy2012
  • myy2012
  • 2013年05月09日 17:04
  • 1208

《c++ primer》 第13章 拷贝控制 学习笔记

第 13 章 拷贝控制 1.拷贝,赋值与销毁 对初学c++的程序员来说,必须定义对象拷贝,移动,赋值或销毁时做什么。 拷贝构造函数:如果一个构造函数的参数是本身的引用,且其他的参数都有默认值,此...
  • wwh578867817
  • wwh578867817
  • 2014年12月15日 16:53
  • 2476

计算几何 : 凸包学习笔记 --- Graham 扫描法

凸包 (只针对二维平面内的凸包) 一、定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个...
  • u013371163
  • u013371163
  • 2017年03月05日 17:11
  • 162

第26章 最大流(正在修改)

一、综述 1.定义 定义1:流网络 定义2:残留容量 定义3:增广路径 已知一个网络流G=(V,E)和流f,增广路径p为残留网络G|f中从s到t的一条简单路径 能够沿一条增广路径p...
  • mishifangxiangdefeng
  • mishifangxiangdefeng
  • 2013年05月18日 22:26
  • 5744

Python 小甲鱼教程 课后练习33 异常处理

第一题: 要求如下,检测输入是否为整数,如果是整数的话,通过,不是的话,捕获错误并报错! 代码如下: def int_input(prompt=''):     whi...
  • bestallen
  • bestallen
  • 2016年07月17日 16:17
  • 710
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第33章 :计算几何学
举报原因:
原因补充:

(最多只允许输入30个字)