Deep Belief Networks资料汇总

转载 2012年03月28日 15:36:25

Arel, I., Rose, D. C. and Karnowski, T. P. Deep machine learning - a new frontier in artificial intelligence research. Computational Intelligence Magazine, IEEE, vol. 5, pp. 13-18, 2010.

深度学习的介绍性文章,可做入门材料。


Bengio, Y. Learning deep architecture for AI. Foundations and Trends in Machine Learning, vol. 2, pp: 1-127, 2009.

深度学习的经典论文,集大成者。可以当作深度学习的学习材料。


Hinton, G. E. Learning multiple layers of representation. Trends in Cognitive Sciences, vol. 11, pp. 428-434, 2007.

不需要太多数学知识即可掌握DBNs的关键算法。这篇论文语言浅白,篇幅短小,适合初学者理解DBNs。


Hinton, G. E. To recognize shapes, first learn to generate images. Technical Report UTML TR 2006-003, University of Toronto, 2006.

多伦多大学的内部讲义。推荐阅读。


Hinton, G. E., Osindero, S. and Teh, Y. W. A fast learning algorithm for deep belief nets. Neural Computation, vol 18, pp. 1527-1554, 2006.

DBNs的开山之作,意义非凡,一定要好好看几遍。在这篇论文中,作者详细阐述了DBNs的方方面面,论证了其和一组层叠的RBMs的等价性,然后引出DBNs的学习算法。


Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science, vol. 313, no. 5786, pp. 504–507, 2006.

Science上的大作。这篇论文可是算作一个里程碑,它标志着深度学习总算有了高效的可行的算法。


Hinton, G. E. A practical guide to training restricted boltzmann machines. Technical Report UTML TR 2010-003, University of Toronto, 2010.

一份训练RBM的最佳实践。


Erhan, D., Manzagol, P. A., Bengio, Y., Bengio, S. and Vincent, P. The difficulty of training deep architectures and the effect of unsupervised pretraining. In The Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 153–160, 2009.


Erhan, D., Courville, A., Bengio, Y. and Vincent, P. Why Does Unsupervised Pre-training Help Deep Learning? In the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Chia Laguna Resort, Sardinia, Italy, 2010.

阐述了非监督预训练的作用。这两篇可以结合起来一起看。


这篇博客给出的材料更加全面,作者来自复旦大学,现似乎是在Yahoo Labs北京研究院工作。

http://demonstrate.ycool.com/post.3006074.html

Hinton主页:http://www.cs.toronto.edu/~hinton/


原帖:http://fantasticinblur.iteye.com/blog/1131640

Deep Belief Networks (DBNs)

Deep Belief Networks(DBNs),是一类随机性Deep neural network,其可以用来对事物进行统计建模,表征事物的抽象特征或统计分布,在手写字识别和语音识别建模中,已被...
  • linjiebelfast
  • linjiebelfast
  • 2013年12月17日 13:22
  • 12606

Deep Belief Networks资料汇总

这是2011年的总结,转自:http://fantasticinblur.iteye.com/blog/1131640 毕设做的是DBNs的相关研究,翻过一些资料,在此做个汇总。 可以通过谷歌学术...
  • han____shuai
  • han____shuai
  • 2016年02月01日 11:12
  • 175

深度信念网络(Deep Belief Network)论文

深度信念网络是深度学习爆发前夕重要的研究成果,以Hinton 2006年的两篇论文为代表。A fast learning algorithm for deep belief netsReducing ...
  • youyuyixiu
  • youyuyixiu
  • 2016年12月20日 15:15
  • 501

DL:Convolutional Deep Belief Networks(CDBN) 代码(matlab)理解

最近看了论文CDBN 的论文和代码,现将对代码的理解稍作整理。 有关论文的一些网址: [1] CRBM http://qipeng.me/software/convolutional-rbm.h...
  • oMengLiShuiXiang1234
  • oMengLiShuiXiang1234
  • 2016年03月26日 21:37
  • 2612

深度学习值得关注的75篇文章

75 most popular Deep Learning Papers from the Bibliography Neural Networks: A Review Analysis of...
  • qqlu_did
  • qqlu_did
  • 2015年01月21日 16:52
  • 1318

深度信念网络Deep Belief Networks资料汇总

毕设做的是DBNs的相关研究,翻过一些资料,在此做个汇总。 可以通过谷歌学术搜索来下载这些论文。 Arel, I., Rose, D. C. and K arnowski, T. P. De...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年04月10日 13:02
  • 1114

DBN训练学习-A fast Learning algorithm for deep belief nets

转载自:http://blog.sciencenet.cn/blog-110554-889016.html DBN的学习一般都是从Hinton的论文A Fast Learning Algorithm...
  • jyl1999xxxx
  • jyl1999xxxx
  • 2016年04月19日 08:14
  • 2786

深度信念网络Deep Belief Networks

Note This section assumes the reader has already read through Classifying MNIST digits using Logi...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年04月02日 19:08
  • 1059

深度信念网络(Deep Belief Network)

“深度学习”学习笔记之深度信念网络    本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼...
  • Losteng
  • Losteng
  • 2016年03月28日 21:11
  • 27100

Deep Belief Networks深信度网络

DBNs是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了...
  • u011437229
  • u011437229
  • 2016年01月22日 14:03
  • 2279
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Deep Belief Networks资料汇总
举报原因:
原因补充:

(最多只允许输入30个字)