最全JAVA地球上两点间的距离算法!包含球体、椭球体、百度算法

原创 2017年01月03日 09:07:19

在网上浏览了很多根据经纬度去计算两点间距离的帖子和书籍。今天有时间整理一下!希望能帮助浏览本贴的程序员们!

第一种:百度算法(java版)网上其他博客也有Python版

public static double max(double a, double b) {
if (a > b)
return a;
return b;
}


public static double min(double a, double c) {
if (a > c)
return c;
return a;
}


public static double lw(double a, double b, double c) {
// b != n && (a = Math.max(a, b));
// c != n && (a = Math.min(a, c));
a = max(a, b);
a = min(a, c);
return a;
}


public static double ew(double a, double b, double c) {
while (a > c) {
a = a - (c - b);
}
while (a < b) {
a = a + (c - b);
}
return a;
}


public static double oi(double a) {
return Math.PI * a / 180;
}


public static double Td(double a, double b, double c, double d) {
return 6370996.81 * Math.acos(Math.sin(c) * Math.sin(d) + Math.cos(c) * Math.cos(d) * Math.cos(b - a));
}


public static double Wv(Point a, Point b) {
double ew = ew(a.getY(), -180, 180);
double lw = lw(a.getX(), -74, 74);
double ew2 = ew(b.getY(), -180, 180);
double lw2 = lw(b.getX(), -74, 74);
return Td(oi(ew), oi(ew2), oi(lw), oi(lw2));
}


public static double getDistance(Point a, Point b) {
double c = Wv(a, b);
return c / 1000;
}

第二种:椭球体算法(最为精确)

public static String BLANK = "";
public static String ZERO = "0";
private static double EARTH_RADIUS = 6378.137;
/**
* VincentyConstants Constants for Vincenty functions.
*/
public static double vincentyConstantA = 6378137;
public static double vincentyConstantB = 6356752.314245;
public static double vincentyConstantF = 1 / 298.257223563;


// 根据两个点坐标计算它们之间的距离(按照圆球体计算,粗略计算)
public static double getDistanceBySphere(double y1, double x1, double y2, double x2) {
double rady1 = rad(y1);
double rady2 = rad(y2);
double a = rady1 - rady2;
double b = rad(x1) - rad(x2);
double s = 2 * Math.asin(Math
.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(rady1) * Math.cos(rady2) * Math.pow(Math.sin(b / 2), 2)));
s = s * EARTH_RADIUS;
s = (double) (Math.round(s * 10000) / 10000);
return s;
}


// 转换弧度
private static double rad(double d) {
return d * Math.PI / 180.0;
}


/**
* Given two objects representing points with geographic coordinates, this
* calculates the distance between those points on the surface of an
* ellipsoid. 按照椭球体计算,精确计算
*
* Returns: The distance (in km) between the two input points as measured on
* an ellipsoid. Note that the input point objects must be in geographic
* coordinates (decimal degrees) and the return distance is in kilometers.
*/
public static double distVincenty(double y1, double x1, double y2, double x2) {
double a = vincentyConstantA;
double b = vincentyConstantB;
double f = vincentyConstantF;


double L = degtoRad(x2 - x1);
double U1 = Math.atan((1 - f) * Math.tan(degtoRad(y1)));
double U2 = Math.atan((1 - f) * Math.tan(degtoRad(y2)));
double sinU1 = Math.sin(U1);
double cosU1 = Math.cos(U1);
double sinU2 = Math.sin(U2);
double cosU2 = Math.cos(U2);
double lambda = L;
double lambdaP = 2 * Math.PI;
double iterLimit = 20;


double sinLambda = 0.0d;
double cosLambda = 0.0d;
double sinSigma = 0.0d;
double cosSigma = 0.0d;
double sigma = 0.0d;
double alpha = 0.0d;
double cosSqAlpha = 0.0d;
double cos2SigmaM = 0.0d;
double C = 0.0d;


while (Math.abs(lambda - lambdaP) > 1e-12 && --iterLimit > 0) {
sinLambda = Math.sin(lambda);
cosLambda = Math.cos(lambda);
sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda)
+ (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (sinSigma == 0) {
return 0; // co-incident points
}
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
alpha = Math.asin(cosU1 * cosU2 * sinLambda / sinSigma);
cosSqAlpha = Math.cos(alpha) * Math.cos(alpha);
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha));
lambdaP = lambda;
lambda = L + (1 - C) * f * Math.sin(alpha)
* (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
}
if (iterLimit == 0) {
return 0.0; // formula failed to converge
}
double uSq = cosSqAlpha * (a * a - b * b) / (b * b);
double A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)));
double B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
double deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)
- B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM)));
double s = b * A * (sigma - deltaSigma);
// double d = Number(s.toFixed(3))/1000; // round to 1mm precision
double d = s / 1000; // round to 1mm precision
return d;
}


/**
* Convert degrees to radian
*
* @param val
*            Value to convert
*/
public static double degtoRad(double val) {
return val * Math.PI / 180;
}

第三种:纯球体近似计算

  1. private static double EARTH_RADIUS = 6378.137;  
  2.     private static double rad(double d)  
  3.     {  
  4.       return d * Math.PI / 180.0;  
  5.     }  
  6.   
  7.     public static double GetDistance(double lat1, double lng1, double lat2, double lng2)  
  8.     {  
  9.       double radLat1 = rad(lat1);  
  10.       double radLat2 = rad(lat2);  
  11.       double a = radLat1 - radLat2;  
  12.       double b = rad(lng1) - rad(lng2);  
  13.       double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a/2),2) +    
  14.       Math.cos(radLat1)*Math.cos(radLat2)*Math.pow(Math.sin(b/2),2)));  
  15.       s = s * EARTH_RADIUS;  
  16.       s = Math.round(s * 10000) / 10000;  
  17.       return s;  
大家使用时请注意单位:km;

地球椭球体基本要素的计算

地球椭球体基本要素的计算,主要包括纬线弧长、子午线弧长、椭球面上梯形面积,以及同一个椭球体下大地坐标和空间直角坐标之间的转换等。为了方便,写了一个类如下,方便调用,在此也分享给大家:头文件如下:/**...

地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念

高斯-克吕格投影与UTM投影 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前...

HDOJ--2001 计算两点间的距离 + HDOJ--2002 计算球体积

计算两点间的距离。 Problem Description 输入两点坐标(X1,Y1),(X2,Y2),计算并输出两点间的距离。 Input 输入数据有多组,每组占一行,由4个实数组成,分别表示x...
  • SHYLOGO
  • SHYLOGO
  • 2017年04月21日 18:19
  • 199

地球上两点之间的距离计算(java)

package com.xagis.model; import java.io.BufferedWriter; import java.io.FileWriter; import java.io.I...

java根据GPS经纬度坐标计算两点的距离算法

在开发项目中用到根据两点计算距离的算法,找了很多。不过很多是存在问题的。现将其整理了一下。供大家参考: [java] view plain copy  ...

OpenGL进阶(四)-用参数方程绘制椭球体

首先参考这篇文章绘制一个球体:OpenGL 用参数方程绘制球 我们知道球体的参数方程是这样的: x=r·sin(α)·cos(β) y=r·sin(α)·sin(β) z=r·cos(α) ...

OpenGL进阶(四)-用参数方程绘制椭球体

转自:http://blog.csdn.net/silangquan/article/details/8351111

OpenGL进阶(四)-用参数方程绘制椭球体

OpenGL进阶(四)-用参数方程绘制椭球体 分类: 计算机图形学 2012-12-20 18:21 364人阅读 评论(0) 收藏 举报 首先参考这篇文章绘制一个球体:Op...

通过经纬度计算地球两点间的距离

设两点A、B的经、纬度分别为(jA,wA)(jB,wB),则半径为R的球面上两点间的最短距离(大圆弧)为: 弧AB=R*arccos[sin(wA)sin(wB)+cos(wA)cos(wB...
  • meeweed
  • meeweed
  • 2011年08月15日 09:50
  • 1336
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最全JAVA地球上两点间的距离算法!包含球体、椭球体、百度算法
举报原因:
原因补充:

(最多只允许输入30个字)