关闭

Day1

Punctuality is a necessary habit in all public affairs in civilized society. Without it, nothing could ever be brought to a conclusion; everything would be in state of chaos. Only in a sparsely-populat...
阅读(2) 评论(0)

VGG

tools-封装器 封装常用函数全连接层需要拉直softmax label需要进行one hot 重新编码 再输入文件做...
阅读(3) 评论(0)

NOTEBOOK随笔

kernel-filter 卷积核=过滤器 滤波器卷积运算 nxn * fxf = (n-f+1)x(n-f+1) 卷积运算结果取决于kernel在原图中有几个位置 缺点 1.每做一次卷积运算,你的image会变小,最终可能变成1x1 2.角落或者边缘区的像素点在输出中采用较少导致信息丢失 弥补:Padding 用像素点填充边缘Valid convolution:no Padding...
阅读(17) 评论(0)

网易云深度学习第二课Notebook3

1.超参数调试处理在机器学习领域,超参数比较少的情况下,我们之前利用设置网格点的方式来调试超参数; 但在深度学习领域,超参数较多的情况下,不是设置规则的网格点,而是随机选择点进行调试。这样做是因为在我们处理问题的时候,是无法知道哪个超参数是更重要的,所以随机的方式去测试超参数点的性能,更为合理,这样可以探究更超参数的潜在价值。 如果在某一区域找到一个效果好的点,将关注点放到点附近的小区域内继续寻...
阅读(14) 评论(0)

网易云深度学习第二课NoteBook2

优化算法1.Mini-batch梯度下降法对整个训练集进行梯度下降法的时候,我们必须处理整个训练数据集,然后才能进行一步梯度下降,即每一步梯度下降需要对整个训练集进行一次处理,如果训练数据很大时,处理速度就会非常慢。 但是如果每次处理训练数据的一部分进行梯度下降法,则算法的执行速度会变快。而处理的这一小部分训练子集即为Mini-batch. 对于普通的梯度下降法,一个epoch只能进行一次梯...
阅读(23) 评论(0)

网易云深度学习第二课notebook1

改善深层神经网络:超参数调试、正则化以及优化1.训练、验证、测试 对于一个dataset,我们通常将其划分为训练集、验证集、测试集 训练集(train set):用训练集对算法或者模型进行训练 验证集(development set):利用验证集或者成为交叉验证集进行交叉验证,选择出最好的模型。 测试集(test set):训练好模型后,通过测试集进行测试。2.偏差、方差 从图中我们可...
阅读(21) 评论(0)

网易云深度学习第一课第三周编程作业

具有一个隐藏层的平面数据分类 第三周的编程任务: 构建一个含有一层隐藏层的神经网络,你将会发现这和使用逻辑回归有很大的不同。 首先先导入在这个任务中你需要的所有的包。 -numpy是Python中与科学计算相关的基础包 -sklearn提供简单高效的数据挖掘和数据分析 -matplotlib是Python中的绘制图形库 -testCase提供了一些测试的例子来评估你的函数的正确性 -...
阅读(120) 评论(0)

string

string基本操作...
阅读(17) 评论(0)

new和malloc的区别

1.申请的内存所在位置 new操作符从自由存储区(free store)上为对象动态分配内存空间,而malloc函数从堆上动态分配空间。自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。而堆是操作系统中的术语,是操作系统所维护的一块特殊内存,用于程序内存的动态分配,C语言使用malloc从堆上分配内存,使用free释放已分配的对应内存。 那...
阅读(18) 评论(0)

typedef struct和struct区别

分三块来讲述: 1 首先: 在C中定义一个结构体类型要用typedef: typedef struct Student { int a; }Stu; 于是在声明变量的时候就可:Stu stu1; 如果没有typedef就必须用struct Student stu1;来声明 这里的Stu实际上就是st...
阅读(15) 评论(0)

网易云深度学习第一课第二周编程作业

Part 2: Logistic Regression with a Neural Network mindset你将学到: -建立学习算法的一般架构 -初始化参数 -计算损失函数和它的梯度 -使用优化算法(梯度下降) -按正确的顺序将上述三个函数集合到一个主模块函数中1 - PackagesFirst, let’s run the cell below to import all the...
阅读(246) 评论(2)

np.linalg

(1)np.linalg.inv():矩阵求逆 (2)np.linalg.det():矩阵求行列式(标量) np.linalg.norm 顾名思义,linalg=linear+algebra,norm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar): norm(x, ord=None, axis=None, keepdims=False) 范数理论...
阅读(43) 评论(0)

网易云深度学习第一课第一周编程作业

1.1Python Basics with Numpy (optional assignment)Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you’ve used Python before, this will help familiarize...
阅读(230) 评论(0)

numpy巩固

基础 NumPy 的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类 型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在 NumPy 中维 度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。 例如,在 3D 空间一个点的坐标 [1, 2, 3] 是一个秩为 1 的数组,因为它只 有一个轴。那个轴长度为 3.又例如,在以下例子中,数组的秩为 2(它...
阅读(22) 评论(0)

DirectX_11_游戏编程入门_1

第一个DirectX程序 1.创建工程 2.建立窗口程序 3.初始化DirectX 4.怎样清除屏幕 5.怎样显示场景一、创建工程 1.创建工程:C++建立项目 2.添加窗体代码:main函数 在工程中创建好main函数后,我们就能够添加Win32的具体实现代码来创建空窗体,进入主函数入口之后,我们将创建初始化D3D11并且使用D3D渲染窗体画布。主函数入口点 在main.cpp中...
阅读(61) 评论(0)
128条 共9页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:12061次
    • 积分:1129
    • 等级:
    • 排名:千里之外
    • 原创:98篇
    • 转载:28篇
    • 译文:2篇
    • 评论:2条
    最新评论