关闭

< 笔记 > Python - 13 Python 常用内建模块

标签: pythonxmlstructbase64hashlib
1060人阅读 评论(0) 收藏 举报
分类:

13 Python 常用内建模块

By Kevin Song

  • 13-01 datetime
  • 13-02 collections
  • 13-03 base64
  • 13-04 struct
  • 13-05 hashlib
  • 13-06 itertools
  • 13-07 contextlib
  • 13-08 XML
  • 13-09 HTMLParser
  • 13-10 urllib

13-01 datetime

datetime是Python处理日期和时间的标准库

获取当前日期和时间

>>> from datetime import datetime
>>> now = datetime.now() # 获取当前datetime
>>> print(now)
2015-05-18 16:28:07.198690
>>> print(type(now))
<class 'datetime.datetime'>

datetime.now()返回当前日期和时间,其类型是datetime

获取指定日期和时间

>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> print(dt)
2015-04-19 12:20:00

datetime & timestamp

timestamp = 0 = 1970-1-1 00:00:00 UTC+0:00

对应的北京时间是:

timestamp = 0 = 1970-1-1 08:00:00 UTC+8:00

datetime转换为timestamp

调用 timestamp() 方法:

>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0

timestamp转换为datetime

调用 fromtimestamp() 方法:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00

datetime & str

str转换为datetime

调用 datetime.strptime() 方法:

>>> from datetime import datetime
>>> cday = datetime.strptime('2015-6-1 18:19:59', '%Y-%m-%d %H:%M:%S')
>>> print(cday)
2015-06-01 18:19:59

datetime转换为str

调用 strftime() 方法:

>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28

datetime加减

>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)

时区转换

# 拿到UTC时间,并强制设置时区为UTC+0:00:
>>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
>>> print(utc_dt)
2015-05-18 09:05:12.377316+00:00
# astimezone()将转换时区为北京时间:
>>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
>>> print(bj_dt)
2015-05-18 17:05:12.377316+08:00
# astimezone()将转换时区为东京时间:
>>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt)
2015-05-18 18:05:12.377316+09:00
# astimezone()将bj_dt转换时区为东京时间:
>>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt2)
2015-05-18 18:05:12.377316+09:00

13-02 collections

Python内建的一个集合模块,提供了许多有用的集合类

namedtuple

namedtuple函数:创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素

定义二维坐标:

>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

定义一个圆:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
  • append()
  • pop()
  • appendleft()
  • popleft()

可以非常高效地往头部添加或删除元素。

defaultdict

defaultdict:key不存在时,不会抛出KeyError,返回一个默认值

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

OrderedDict

Key有顺序的dict

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

OrderedDict实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity

    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print('remove:', last)
        if containsKey:
            del self[key]
            print('set:', (key, value))
        else:
            print('add:', (key, value))
        OrderedDict.__setitem__(self, key, value)

Counter

计数器,统计字符出现的个数:

>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
...     c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})

13-03 base64

Base64是一种用64个字符来表示任意二进制数据的方法

原理:

  • 包含64个字符的数组:
['A', 'B', 'C', ... 'a', 'b', 'c', ... '0', '1', ... '+', '/']
  • 对二进制数据进行处理,每3个字节一组,一共是3x8=24bit,划为4组,每组正好6个bit
  • 得到4个数字作为索引,然后查表,获得相应的4个字符,就是编码后的字符串

Base64编码会把3字节的二进制数据编码为4字节的文本数据,长度增加33%,好处是编码后的文本数据可以在邮件正文、网页等直接显示

注意: 当要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节时,Base64用\x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉

>>> import base64
>>> base64.b64encode(b'binary\x00string')
b'YmluYXJ5AHN0cmluZw=='
>>> base64.b64decode(b'YmluYXJ5AHN0cmluZw==')
b'binary\x00string'

url safe”的base64编码(把字符+和/分别变成-和_)

>>> base64.b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd++//'
>>> base64.urlsafe_b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd--__'
>>> base64.urlsafe_b64decode('abcd--__')
b'i\xb7\x1d\xfb\xef\xff'

13-04 struct

把一个32位无符号整数变成字节(也就是4个长度的bytes)

>>> n = 10240099
>>> b1 = (n & 0xff000000) >> 24
>>> b2 = (n & 0xff0000) >> 16
>>> b3 = (n & 0xff00) >> 8
>>> b4 = n & 0xff
>>> bs = bytes([b1, b2, b3, b4])
>>> bs
b'\x00\x9c@c'

Python提供了一个struct模块来解决bytes和其他二进制数据类型的转换

pack函数把任意数据类型变成bytes:

>>> import struct
>>> struct.pack('>I', 10240099)
b'\x00\x9c@c'
  • 第一个参数是处理指令:’>I’
    • >表示字节顺序是big-endian,也就是网络序
    • I表示4字节无符号整数

unpack把bytes变成相应的数据类型:

>>> struct.unpack('>IH', b'\xf0\xf0\xf0\xf0\x80\x80')
(4042322160, 32896)
  • I:4字节无符号整数
  • H:2字节无符号整数

13-05 hashlib

hashlib提供了常见的摘要算法(又名哈希算法、散列算法)

哈希算法:通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)

MD5

计算出一个字符串的MD5值:

import hashlib

md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?'.encode('utf-8'))
print(md5.hexdigest())

计算结果如下:

d26a53750bc40b38b65a520292f69306

分块多次调用update(),计算结果一样:

import hashlib

md5 = hashlib.md5()
md5.update('how to use md5 in '.encode('utf-8'))
md5.update('python hashlib?'.encode('utf-8'))
print(md5.hexdigest())

SHA1

import hashlib

sha1 = hashlib.sha1()
sha1.update('how to use sha1 in '.encode('utf-8'))
sha1.update('python hashlib?'.encode('utf-8'))
print(sha1.hexdigest())

摘要算法应用

数据库表中存储用户登录的用户名和口令

name password
michael 123456
bob abc999
lice alice2008

正确的保存口令的方式是不存储用户的明文口令,而是存储用户口令的摘要,比如MD5:

username password
michael e10adc3949ba59abbe56e057f20f883e
bob 878ef96e86145580c38c87f0410ad153
alice 99b1c2188db85afee403b1536010c2c9

当用户登录时,首先计算用户输入的明文口令的MD5,然后和数据库存储的MD5对比,如果一致,说明口令输入正确,如果不一致,口令肯定错误。

13-06 itertools

count()

创建一个无限的迭代器,根本停不下来,只能Ctrl+C退出

>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
...     print(c)
...
'A'
'B'
'C'
'A'
'B'
'C'
...

cycle()

无限重复序列

>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
...     print(c)
...
'A'
'B'
'C'
'A'
'B'
'C'
...

repeat()

重复序列n次

>>> ns = itertools.repeat('A', 3)
>>> for n in ns:
...     print(n)
...
A
A
A

chain()

把一组迭代对象串联起来,形成一个更大的迭代器:

>>> for c in itertools.chain('ABC', 'XYZ'):
...     print(c)
# 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'

groupby()

把迭代器中相邻的重复元素挑出来放在一起:

>>> for key, group in itertools.groupby('AAABBBCCAAA'):
...     print(key, list(group))
...
A ['A', 'A', 'A']
B ['B', 'B', 'B']
C ['C', 'C']
A ['A', 'A', 'A']

实际上挑选规则是通过函数完成的,只要作用于函数的两个元素返回的值相等,这两个元素就被认为是在一组的,而函数返回值作为组的key。如果我们要忽略大小写分组,就可以让元素’A’和’a’都返回相同的key:

>>> for key, group in itertools.groupby('AaaBBbcCAAa', lambda c: c.upper()):
...     print(key, list(group))
...
A ['A', 'a', 'a']
B ['B', 'B', 'b']
C ['c', 'C']
A ['A', 'A', 'a']

13-07 contextlib

读写文件这样的资源要在使用完毕后用try…finally正确关闭它们

try:
    f = open('/path/to/file', 'r')
    f.read()
finally:
    if f:
        f.close()

with语句简化为:

with open('/path/to/file', 'r') as f:
    f.read()

实现上下文管理就可以用于with语句,是通过enterexit这两个方法实现

class Query(object):

    def __init__(self, name):
        self.name = name

    def __enter__(self):
        print('Begin')
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        if exc_type:
            print('Error')
        else:
            print('End')

    def query(self):
        print('Query info about %s...' % self.name)

这样我们就可以把自己写的资源对象用于with语句:

with Query('Bob') as q:
    q.query()

contextlib

@contextmanager

contextlib提供了@contextmanager这个decorator更简单

from contextlib import contextmanager

class Query(object):

    def __init__(self, name):
        self.name = name

    def query(self):
        print('Query info about %s...' % self.name)

@contextmanager
def create_query(name):
    print('Begin')
    q = Query(name)
    yield q
    print('End')

@contextmanager这个decorator接受一个generator,用yield语句把with … as var把变量输出出去,然后,with语句就可以正常地工作了:

with create_query('Bob') as q:
    q.query()

用@contextmanager实现某段代码执行前后自动执行特定代码

@contextmanager
def tag(name):
    print("<%s>" % name)
    yield
    print("</%s>" % name)

with tag("h1"):
    print("hello")
    print("world")

上述代码执行结果为:

<h1>
hello
world
</h1>

代码的执行顺序是:

  1. with语句首先执行yield之前的语句,因此打印出

  2. yield调用会执行with语句内部的所有语句,因此打印出hello和world;
  3. 最后执行yield之后的语句,打印出。

@closing

如果一个对象没有实现上下文,我们就不能把它用于with语句。这个时候,可以用closing()来把该对象变为上下文对象。例如,用with语句使用urlopen():

from contextlib import closing
from urllib.request import urlopen

with closing(urlopen('https://www.python.org')) as page:
    for line in page:
        print(line)

closing也是一个经过@contextmanager装饰的generator,这个generator编写起来其实非常简单:

@contextmanager
def closing(thing):
    try:
        yield thing
    finally:
        thing.close()

它的作用就是把任意对象变为上下文对象,并支持with语句。

13-08 XML

操作XML有两种方法:

  • DOM
    • 把整个XML读入内存,解析为树,因此占用内存大,解析慢
    • 优点:可以任意遍历树的节点
  • SAX
    • 流模式,边读边解析,占用内存小,解析快
    • 缺点:需要自己处理事件

优先考虑SAX,DOM太占内存

当SAX解析器读到一个节点时:

<a href="/">python</a>

会产生3个事件:

  1. start_element事件,在读取\
  2. char_data事件,在读取python时
  3. end_element事件,在读取时
from xml.parsers.expat import ParserCreate

class DefaultSaxHandler(object):
    def start_element(self, name, attrs):
        print('sax:start_element: %s, attrs: %s' % (name, str(attrs)))

    def end_element(self, name):
        print('sax:end_element: %s' % name)

    def char_data(self, text):
        print('sax:char_data: %s' % text)

xml = r'''<?xml version="1.0"?>
<ol>
    <li><a href="/python">Python</a></li>
    <li><a href="/ruby">Ruby</a></li>
</ol>
'''

handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
parser.Parse(xml)

注意:读取一大段字符串时,CharacterDataHandler可能被多次调用,所以需要自己保存起来,在EndElementHandler里面再合并

生成XML

L = []
L.append(r'<?xml version="1.0"?>')
L.append(r'<root>')
L.append(encode('some & data'))
L.append(r'</root>')
return ''.join(L)

13-09 HTMLParser

搜索引擎

  • 第一步:用爬虫把目标网站的页面抓下来
  • 第二步:解析该HTML页面,看看里面的内容到底是新闻、图片还是视频

HTMLParser解析HTML:可以把网页中的文本、图像等解析出来

from html.parser import HTMLParser
from html.entities import name2codepoint

class MyHTMLParser(HTMLParser):

    def handle_starttag(self, tag, attrs):
        print('<%s>' % tag)

    def handle_endtag(self, tag):
        print('</%s>' % tag)

    def handle_startendtag(self, tag, attrs):
        print('<%s/>' % tag)

    def handle_data(self, data):
        print(data)

    def handle_comment(self, data):
        print('<!--', data, '-->')

    def handle_entityref(self, name):
        print('&%s;' % name)

    def handle_charref(self, name):
        print('&#%s;' % name)

parser = MyHTMLParser()
parser.feed('''<html>
<head></head>
<body>
<!-- test html parser -->
    <p>Some <a href=\"#\">html</a> HTML&nbsp;tutorial...<br>END</p>
</body></html>''')

feed()方法可以多次调用,也就是不一定一次把整个HTML字符串都塞进去,可以一部分一部分塞进去。

特殊字符有两种,一种是英文表示的\ ,一种是数字表示的\Ӓ,这两种字符都可以通过Parser解析出来

13-10 urllib

urllib提供了一系列用于操作URL的功能

Get

urllib的request模块抓取URL内容:发送一个GET请求到指定的页面,然后返回HTTP的响应:

from urllib import request

with request.urlopen('https://api.douban.com/v2/book/2129650') as f:
    data = f.read()
    print('Status:', f.status, f.reason)
    for k, v in f.getheaders():
        print('%s: %s' % (k, v))
    print('Data:', data.decode('utf-8'))

HTTP响应的头和JSON数据:

Status: 200 OK
Server: nginx
Date: Tue, 26 May 2015 10:02:27 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 2049
Connection: close
Expires: Sun, 1 Jan 2006 01:00:00 GMT
Pragma: no-cache
Cache-Control: must-revalidate, no-cache, private
X-DAE-Node: pidl1
Data: {"rating":{"max":10,"numRaters":16,"average":"7.4","min":0},"subtitle":"","author":["廖雪峰编著"],"pubdate":"2007-6","tags":[{"count":20,"name":"spring","title":"spring"}...}

模拟浏览器发送GET请求,就需要使用Request对象,通过往Request对象添加HTTP头,我们就可以把请求伪装成浏览器。例如,模拟iPhone 6去请求豆瓣首页:

from urllib import request

req = request.Request('http://www.douban.com/')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
with request.urlopen(req) as f:
    print('Status:', f.status, f.reason)
    for k, v in f.getheaders():
        print('%s: %s' % (k, v))
    print('Data:', f.read().decode('utf-8'))

这样豆瓣会返回适合iPhone的移动版网页:

...
    <meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0">
    <meta name="format-detection" content="telephone=no">
    <link rel="apple-touch-icon" sizes="57x57" href="http://img4.douban.com/pics/cardkit/launcher/57.png" />
...

Post

把参数data以bytes形式传入
模拟一个微博登录,先读取登录的邮箱和口令,然后按照weibo.cn的登录页的格式以username=xxx&password=xxx的编码传入:

from urllib import request, parse

print('Login to weibo.cn...')
email = input('Email: ')
passwd = input('Password: ')
login_data = parse.urlencode([
    ('username', email),
    ('password', passwd),
    ('entry', 'mweibo'),
    ('client_id', ''),
    ('savestate', '1'),
    ('ec', ''),
    ('pagerefer', 'https://passport.weibo.cn/signin/welcome?entry=mweibo&r=http%3A%2F%2Fm.weibo.cn%2F')
])

req = request.Request('https://passport.weibo.cn/sso/login')
req.add_header('Origin', 'https://passport.weibo.cn')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
req.add_header('Referer', 'https://passport.weibo.cn/signin/login?entry=mweibo&res=wel&wm=3349&r=http%3A%2F%2Fm.weibo.cn%2F')

with request.urlopen(req, data=login_data.encode('utf-8')) as f:
    print('Status:', f.status, f.reason)
    for k, v in f.getheaders():
        print('%s: %s' % (k, v))
    print('Data:', f.read().decode('utf-8'))

如果登录成功,我们获得的响应如下:

Status: 200 OK
Server: nginx/1.2.0
...
Set-Cookie: SSOLoginState=1432620126; path=/; domain=weibo.cn
...
Data: {"retcode":20000000,"msg":"","data":{...,"uid":"1658384301"}}

如果登录失败,我们获得的响应如下:

...
Data: {"retcode":50011015,"msg":"\u7528\u6237\u540d\u6216\u5bc6\u7801\u9519\u8bef","data":{"username":"example@python.org","errline":536}}

Handler

如果还需要更复杂的控制,比如通过一个Proxy去访问网站,我们需要利用ProxyHandler来处理,示例代码如下:

proxy_handler = urllib.request.ProxyHandler({'http': 'http://www.example.com:3128/'})
proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()
proxy_auth_handler.add_password('realm', 'host', 'username', 'password')
opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)
with opener.open('http://www.example.com/login.html') as f:
    pass
1
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

Python常用内建模块——学习笔记

1、datetime:Python处理日期和时间的标准库 引入方法: from datetime import datetime。 第一个datetime是模块,第二个datetime是类。 ...
  • Flyfish111222
  • Flyfish111222
  • 2016-07-08 17:36
  • 2227

python基础学习笔记<内建模块与第三方模块>

来自:http://www.liaoxuefeng.com/ TCP/IP简介 端口有什么作用?在两台计算机通信时,只发IP地址是不够的,因为同一台计算机上跑着多个网络程序。一个I...
  • new_abc
  • new_abc
  • 2015-08-07 10:37
  • 464

【Python】学习笔记——-13、常用内建模块

什么是内建模块? Python之所以自称“batteries included”,就是因为内置了许多非常有用的模块,无需额外安装和配置,即可直接使用。 本章将介绍一些常用的内建模块。 ...
  • singit
  • singit
  • 2017-02-27 14:42
  • 417

Python常用内建模块

Python常用内建模块 Python之所以自称“batteries included”,就是因为内置了许多非常有用的模块,无需额外安装和配置,即可直接使用。 本章将介绍一些常用的内建模块。 1...
  • walxiaosage
  • walxiaosage
  • 2016-01-19 14:52
  • 505

python常用内建模块

#python常用内建模块 #1、datetime from datetime import datetime #日期格式 date = datetime.now() #获取当前日期时间:201...
  • jj546630576
  • jj546630576
  • 2017-07-24 10:53
  • 114

Python 常用内建模块

collectionscollections是Python内建的一个集合模块,提供了许多有用的集合类。namedtuple我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:>>>...
  • qq_31179919
  • qq_31179919
  • 2016-09-04 11:19
  • 347

Python 主要模块和常用方法简览

************************ 作者:D調の學痞 日期:2014-03-26 原文地址:http://blog.csdn.net/hwhjava/article/details...
  • hwhjava
  • hwhjava
  • 2014-03-27 13:58
  • 17393

Python模块的动态加载机制

Python在运行环境初始化中,就将sys module加载到了内存中, 实际上,Python是将一大批的module加载到了内存中。但是为了使local名字空间能够达到最干净的效果,Python并...
  • mogigo00
  • mogigo00
  • 2017-02-12 09:31
  • 223

Python常用第三方模块

作者:iGuo 链接:https://zhuanlan.zhihu.com/p/21365319 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 一、Python爬...
  • wilimaster
  • wilimaster
  • 2016-09-19 14:44
  • 671

Python常用内建模块之itertools

Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。 首先,我们看看itertools提供的几个“无限”迭代器: 1.count()会创建一个无限的迭代器 impor...
  • salove_y
  • salove_y
  • 5天前 14:49
  • 7
    个人资料
    • 访问:6821次
    • 积分:619
    • 等级:
    • 排名:千里之外
    • 原创:58篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档