积分(Integral)


此篇为两本书的相关内容,并没有进行整合,可能有重复

15.积分

积分的应用:
1.求不规则图形面积
2.不规则物体的体积
3.变速运动物体的路程
4. ……

15.1 求和符号

15.1.1 一个有用的求和

15.1.2 伸缩求和法

伸缩级数


例1:

例2:

例3:

15.2 位移和面积

15.2.1 三个简单的例子(离散的速度)

三辆车沿笔直公路向前行驶,在每个时间段内速度是常数

第一辆车
路程 = 位移 = v × t = 50 × 2 = 100 路程=位移=v×t=50×2=100 路程=位移=v×t=50×2=100

第二辆车
路程 = 位移 = ∑ v × t = 40 × 1 + 60 × 1 = 100 路程=位移=\sum v×t=40×1+60×1=100 路程=位移=v×t=40×1+60×1=100

第三辆车
路程 = 位移 = ∑ v × t = 50 × 0.25 + 30 × 0.75 + 30 × 0.5 + 25 × 0.5 = 100 路程=位移=\sum v×t=50×0.25+30×0.75+30×0.5+25×0.5=100 路程=位移=v×t=50×0.25+30×0.75+30×0.5+25×0.5=100

15.2.2 一个常规例子

路程 = 位移 = ∑ v × t = v 1 ( t 1 − t 0 ) + v 2 ( t 2 − t 1 ) + ⋯ + v n − 1 ( t n − 1 − t n − 2 ) + v n ( t n − t n − 1 ) 路程=位移=\sum v×t=v_1(t_1-t_0)+v_2(t_2-t_1)+\cdots+v_{n-1}(t_{n-1}-t_{n-2})+v_n(t_n-t_{n-1}) 路程=位移=v×t=v1(t1t0)+v2(t2t1)++vn1(tn1tn2)+vn(tntn1)

15.2.3 有向面积

路程 = ∑ v t = 40 × 1 + 30 × 2 = 100 路程=\sum vt=40×1+30×2=100 路程=vt=40×1+30×2=100
位移 = ∑ v t = 40 × 1 + ( − 30 ) × 2 = − 20 位移=\sum vt=40×1+(-30)×2=-20 位移=vt=40×1+(30)×2=20

15.2.4 连续的速度

在每个时间段内速度不是常数

在小时间段内,速度有微小变化,但我们假设速度没变。在时间段 [ p , q ] [p,q] [p,q] 内选择某一时刻 c c c 的速度作为样本速度。
假设所选择的的样本速度为该时间段 [ p , q ] [p,q] [p,q] 内的实际速度


重复以上划分过程
用长方形条的面积来逼近曲线下的面积(路程或位移)


尽管在这些分区中使用很多小区间,但如果其中某个分区很大,对估算结果会有很大影响

最大区间的定义


最大区间 mesh 趋于 0,划分数目会越来越多(最大区间缩小时,其他区间也同时缩小)

15.2.5 黎曼上和、黎曼下和

黎曼上和

黎曼下和

5.积分

5.1 黎曼和求积分






黎曼和与积分的关系

当子区间宽度 b − a n \frac{b-a}{n} nba 无限小时(即 n → ∞ n\rightarrow \infty n 时),黎曼和就无限逼近于真实面积

5.2 反导数求积分


5.3 积分基本定理


5.3 定积分

定积分满足的法则


5.4 定积分的中值定理


蓝色区域面积刚好等于区间内某个 c c c 的函数值乘区间长度 b − a b-a ba
f ( c ) ( b − a ) = ∫ a b f ( x ) d x f(c)(b-a)=\int_a^bf(x)dx f(c)(ba)=abf(x)dx

5.5 两曲线间面积

5.6 对 y 进行积分


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值