【第22期】观点:IT 行业加班,到底有没有价值?

R语言实战-基本数据管理

原创 2016年05月30日 21:11:37

mydata<-mydata=data.frame(X=c(1:10),Y=c(21:30))

基本数据管理

raname(datafram,c(oldname='newname',......)
mydata=data.frame(X=c(1:10),Y=c(21:30))
mydata$X
stock=read.csv('sample.csv')
is.na(stock)
na.omit(mydata)  #去除NA值
as.Date(c('2010-03-22','2019-03-22'),'%m%d%Y')   #字符串转换为日期
# format() 用法相似
Sys.Date()   #返回当天的日期
difftime('2016-06-10',Sys.Date())  #计算时间间隔
order_test=test[order(test$high),]  #排序 -表示降序
order_open=test[order(-open),]

#选取子集  data.frame[row indices,row indices]
indice=test[c(1:20),'open']
colomns_names=names(test)  #生成所有列明
test[which(test$open>15 & test$low>18),] 
subset(test,open>15 & low>18)
#数据集的合并
merge(A,B,by="ID")
cbind(A,B)  #不需要指定公共的索引
rbind(A,b)
paste(c(1:2),c('we','ee'))   #相当python zip
#随机抽样
mysample=test[sample(:nrow(test),100,replace=FALSE)]
#使用SQL语句操作数据框
library(sqldf)
sql_data=sqldf('select * from my_test where open>15 order by high',row.names=TRUE)

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

R语言实战笔记--第四&五章 数据管理

R语言实战笔记–第四&五章 数据管理标签(空格分隔): R语言  第四、第五章都是说的数据管理,合并在一起做个总结,在个人看来,数据管理是一件非常繁琐的事情,但是,每个统计的前提都是一个合适的数据样本...

R语言_基本数据管理

r语言 数据管理

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

R语言实战之高级数据管理

高级数据管理#数学函数 data=read.csv('sample.csv') high=data$high[c(1:20)] abs(high) sqrt(high) #不小于high的最小整数 c...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)