R语言实战-基本数据管理

原创 2016年05月30日 21:11:37

mydata<-mydata=data.frame(X=c(1:10),Y=c(21:30))

基本数据管理

raname(datafram,c(oldname='newname',......)
mydata=data.frame(X=c(1:10),Y=c(21:30))
mydata$X
stock=read.csv('sample.csv')
is.na(stock)
na.omit(mydata)  #去除NA值
as.Date(c('2010-03-22','2019-03-22'),'%m%d%Y')   #字符串转换为日期
# format() 用法相似
Sys.Date()   #返回当天的日期
difftime('2016-06-10',Sys.Date())  #计算时间间隔
order_test=test[order(test$high),]  #排序 -表示降序
order_open=test[order(-open),]

#选取子集  data.frame[row indices,row indices]
indice=test[c(1:20),'open']
colomns_names=names(test)  #生成所有列明
test[which(test$open>15 & test$low>18),] 
subset(test,open>15 & low>18)
#数据集的合并
merge(A,B,by="ID")
cbind(A,B)  #不需要指定公共的索引
rbind(A,b)
paste(c(1:2),c('we','ee'))   #相当python zip
#随机抽样
mysample=test[sample(:nrow(test),100,replace=FALSE)]
#使用SQL语句操作数据框
library(sqldf)
sql_data=sqldf('select * from my_test where open>15 order by high',row.names=TRUE)

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

R语言实战笔记--第四&五章 数据管理

R语言实战笔记–第四&五章 数据管理标签(空格分隔): R语言  第四、第五章都是说的数据管理,合并在一起做个总结,在个人看来,数据管理是一件非常繁琐的事情,但是,每个统计的前提都是一个合适的数据样本...

R语言实战:高级数据管理(1)

一个数据处理难题:  一组学生参加了数学,科学,英语这三门考试。为了给所有学生确定一个单一的成绩衡量标准,需要将这些科目的成绩组合起来。另外,你还想将前20%的学生评定为A,接下来20%的学生评定为B...

R语言_基本数据管理

r语言 数据管理

R语言_高级数据管理

高级数据管理

慕课R语言之数据可视化学习笔记——3.3基本绘图系统实战

1.1 HIST hist用于绘制直方图,使用内置的airquality数据为案例: hist(airquality$Temp)#绘制airquality中的温度Temp直方图。 结果:      ...

SAS与R的数据管理与可视化

  • 2015-12-24 22:35
  • 2.34MB
  • 下载

SAS与R的数据管理与可视化

  • 2015-08-02 13:21
  • 2.34MB
  • 下载

SQL Server 2008 R2数据管理全新亮相:多服务器管理

多服务器管理是SQL Server 2008 R2新增的功能,该功能能够跨多个SQL Server实例进行自动化管理,能够同时管理多台服务器以及在企业服务器之间安排数据仓库的信息流。      多服...

数据管理语言(DML)

第二部分------------------>>>>DML(数据管理语言) Data Management Language 1、创建数据(记录插入)  2、查询数据(记录查询) 3、修...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)