Seaborn-PairGrid

原创 2016年05月31日 21:08:30

seaborn.pairplot

  • seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind=’scatter’, diag_kind=’hist’, markers=None, size=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None)

Parameters:

  • data : DataFrame
    Tidy (long-form) dataframe where each column is a variable and each row is an observation.
  • hue : (根据某一类别进行分类,比如code)string (variable name), optional
    Variable in data to map plot aspects to different colors.
  • hue_order : list of strings
    Order for the levels of the hue variable in the palette
  • palette : dict or seaborn color palette
    Set of colors for mapping the hue variable. If a dict, keys should be values in the hue variable.
  • vars : **DataFrame列名称**list of variable names, optional
    Variables within data to use, otherwise use every column with a numeric datatype.
    {x, y}_vars : lists of variable names, optional
    Variables within data to use separately for the rows and columns of the figure; i.e. to make a non-square plot.
    -* kind* : {‘scatter’, ‘reg’}, optional
    Kind of plot for the non-identity relationships.
  • diag_kind : (对脚线图形的种类){‘hist’, ‘kde’}, optional
    Kind of plot for the diagonal subplots.
  • markers : single matplotlib marker code or list, optional
    Either the marker to use for all datapoints or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers.
  • size : scalar, optional
    Height (in inches) of each facet.
  • aspect : scalar, optional
    Aspect * size gives the width (in inches) of each facet.
  • dropna : boolean, optional
    Drop missing values from the data before plotting.
    {plot, diag, grid}_kws : dicts, optional
    Dictionaries of keyword arguments.
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
sns.set_style('darkgrid')
f,axes=plt.subplots(3,3,figsize=(9,9),sharex=True,sharey=True)

stock=pd.read_csv('sample.csv',index_col=0)
sns.kdeplot(stock.open,stock.high)
<matplotlib.axes._subplots.AxesSubplot at 0x3ad9e748>

sns.boxplot(stock.open,stock.high)
<matplotlib.axes._subplots.AxesSubplot at 0x277f22e8>

sns.lmplot(x='ma10',y='ma20',data=stock)
<seaborn.axisgrid.FacetGrid at 0x31245dd8>

sns.jointplot('ma10','price_change',data=stock,kind='reg')
<seaborn.axisgrid.JointGrid at 0x31c85898>

g=sns.pairplot(stock.ix[:,5:10])

sns.pairplot(stock.ix[:,10:],hue='code')
<seaborn.axisgrid.PairGrid at 0x5a860a20>

vars=['ma5','ma10','v_ma5']
sns.pairplot(stock,vars=vars,hue='code',size=5,kind='scatter',diag_kind='kde',diag_kws=dict(shade=True))
<seaborn.axisgrid.PairGrid at 0x6fc2ee10>

sns.pairplot(stock,vars=vars,hue='code',size=5,kind='scatter',plot_kws=dict(s=50, edgecolor="b", linewidth=1),diag_kind='kde',diag_kws=dict(shade=True))
<seaborn.axisgrid.PairGrid at 0x71608588>

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

python seaborn画图

python seaborn画图以前觉得用markdown写图文混排的文字应该很麻烦,后来发现CSDN的markdown真是好用的。在做分析时候,有时需要画几个图看看数据分布情况,但总记不住pytho...

Python数据可视化—seaborn简介和实例

这里实例采用的数据集都是seaborn提供的几个经典数据集,dataset文件可见于Github。 1  set_style( ) 设置主题 Seaborn有五个预设好的主题: darkgrid , ...

Python可视化模块——SeaBorn 01

SeaBorn 01Python可视化模块SeaBorn:特点 多个内置主题和颜色主题 可视化单一变量、二维变量用于比较数据集中各变量的分布情况 可视化线性回归模型中的独立变量及不独立变量 可视化矩阵...

使用seaborn画堆积柱状图

csv pandas seaborn pyspark.sql

seaborn简单使用

使用python 绘图包seaborn探索数据

Seaborn中文教程

Seaborn介绍:Seaborn属于Matplotlib的一个高级接口,为我们进行数据的可视化分析提供了极大的方便。 博主是为了入门Kaggle比赛而学习的Seaborn,下面是博主的学习过程,希...

Seaborn-04-Jointplot两变量图

#-*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt import seaborn as sns 绿色:...

python科学计算--核心工具包一瞥(二)(win10 64位,numpy,scipy,pandas,seaborn安装)

1.安装numpy,scipy (1)在网站http://www.lfd.uci.edu/~gohlke/pythonlibs/上下载: numpy-1.11.1+mkl-cp27-cp27m-w...

基于pandas和seaborn进行数据可视化以及相关性分析

本博客学习pandas数据结构和seabon,以kaggle数据集为例,完成数据可视化以及相关性分析。数据总共12列,其中Survived列为target属性(y属性)。加载原始数据pandas数据结...

Seaborn-03-数据分布图

基本#-*- coding:utf-8 -*- from __future__ import division import numpy as np import pandas as pd impor...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)