Seaborn-PairGrid

原创 2016年05月31日 21:08:30

seaborn.pairplot

  • seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind=’scatter’, diag_kind=’hist’, markers=None, size=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None)

Parameters:

  • data : DataFrame
    Tidy (long-form) dataframe where each column is a variable and each row is an observation.
  • hue : (根据某一类别进行分类,比如code)string (variable name), optional
    Variable in data to map plot aspects to different colors.
  • hue_order : list of strings
    Order for the levels of the hue variable in the palette
  • palette : dict or seaborn color palette
    Set of colors for mapping the hue variable. If a dict, keys should be values in the hue variable.
  • vars : **DataFrame列名称**list of variable names, optional
    Variables within data to use, otherwise use every column with a numeric datatype.
    {x, y}_vars : lists of variable names, optional
    Variables within data to use separately for the rows and columns of the figure; i.e. to make a non-square plot.
    -* kind* : {‘scatter’, ‘reg’}, optional
    Kind of plot for the non-identity relationships.
  • diag_kind : (对脚线图形的种类){‘hist’, ‘kde’}, optional
    Kind of plot for the diagonal subplots.
  • markers : single matplotlib marker code or list, optional
    Either the marker to use for all datapoints or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers.
  • size : scalar, optional
    Height (in inches) of each facet.
  • aspect : scalar, optional
    Aspect * size gives the width (in inches) of each facet.
  • dropna : boolean, optional
    Drop missing values from the data before plotting.
    {plot, diag, grid}_kws : dicts, optional
    Dictionaries of keyword arguments.
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
sns.set_style('darkgrid')
f,axes=plt.subplots(3,3,figsize=(9,9),sharex=True,sharey=True)

stock=pd.read_csv('sample.csv',index_col=0)
sns.kdeplot(stock.open,stock.high)
<matplotlib.axes._subplots.AxesSubplot at 0x3ad9e748>

sns.boxplot(stock.open,stock.high)
<matplotlib.axes._subplots.AxesSubplot at 0x277f22e8>

sns.lmplot(x='ma10',y='ma20',data=stock)
<seaborn.axisgrid.FacetGrid at 0x31245dd8>

sns.jointplot('ma10','price_change',data=stock,kind='reg')
<seaborn.axisgrid.JointGrid at 0x31c85898>

g=sns.pairplot(stock.ix[:,5:10])

sns.pairplot(stock.ix[:,10:],hue='code')
<seaborn.axisgrid.PairGrid at 0x5a860a20>

vars=['ma5','ma10','v_ma5']
sns.pairplot(stock,vars=vars,hue='code',size=5,kind='scatter',diag_kind='kde',diag_kws=dict(shade=True))
<seaborn.axisgrid.PairGrid at 0x6fc2ee10>

sns.pairplot(stock,vars=vars,hue='code',size=5,kind='scatter',plot_kws=dict(s=50, edgecolor="b", linewidth=1),diag_kind='kde',diag_kws=dict(shade=True))
<seaborn.axisgrid.PairGrid at 0x71608588>

版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn的线性回归模型 利用pandas处理数据

内容概要 如何使用pandas读入数据如何使用seaborn进行数据的可视化scikit-learn的线性回归模型和使用方法线性回归模型的评估测度特征选择的方法 ...
  • shulixu
  • shulixu
  • 2016年03月18日 16:54
  • 3322

seaborn

%matplotlib inlineimport pandas as pd import numpy as np import seaborn as sns from sklearn import p...
  • weiyudang11
  • weiyudang11
  • 2016年05月31日 19:43
  • 1772

Python-sklearn机器学习的第一个样例(2)

本文翻译自Randal S. Olson的文章《An example machine learning notebook》,原文:点击打开链接 这篇文章可以作为机器学习的第一个学习案例,通过这个案例,...
  • xiexf189
  • xiexf189
  • 2017年05月19日 14:15
  • 676

kaggle可视化教程翻译

原文链接:点击打开链接这里的数据集是iris,python自带的有。# encoding=utf-8 import pandas as pd import warnings warnings.filt...
  • lzj5451896
  • lzj5451896
  • 2016年10月02日 18:27
  • 805

Seaborn包 画出好看的分布图(Python)

参考:http://www.open-open.com/lib/view/open1434182977754.html            http://blog.csdn.net/pipisor...
  • zhangqilong120
  • zhangqilong120
  • 2017年05月22日 21:27
  • 437

Seaborn-03-数据分布图

基本#-*- coding:utf-8 -*- from __future__ import division import numpy as np import pandas as pd impor...
  • longgb123
  • longgb123
  • 2016年11月18日 18:29
  • 458

使用seaborn画堆积柱状图

csv pandas seaborn pyspark.sql
  • zhousishuo
  • zhousishuo
  • 2017年07月18日 20:47
  • 1149

Seaborn使用说明

python作图已成为数据分析中不可或缺的手段,常使用的包为matplotlib,它被很多其它包所依赖,例如pandas中具有的绘图功能就是对matplotlib的API的二次封装使用,今天要说明的s...
  • sinat_29508201
  • sinat_29508201
  • 2016年01月06日 18:15
  • 2101

Seaborn 统计数据可视化图标库 Overview

Seaborn是一个python统计数据可视化图标库(statistical data visualization) An introduction to seaborn Seaborn is a...
  • iamoyjj
  • iamoyjj
  • 2017年05月01日 09:52
  • 1530

seaborn 画图功能简单总结

seaborn 画图功能
  • sylmoon
  • sylmoon
  • 2018年01月04日 18:43
  • 100
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Seaborn-PairGrid
举报原因:
原因补充:

(最多只允许输入30个字)