比较简单的一道DP题,题意是给你n条路,每条路的最右边有一个梯子,也就是说只要一条路的最右边在另一条路上,那么就可以从这条路去那条路。
一开始没考虑清楚状态怎么表示,TLE了一次。 因为路的最右边从小到大排序,且不能向回走,所以用d[i]表示到大i点的最优解,那么当前这个状态只能由该点之前的某条路也就是某个状态转移过来,所以只要枚举i点之前的所有路就行了,另外注意一下边界。
推荐下一道DP题目:点击打开链接
细节参见代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<list>
#include<cmath>
#include<set>
#include<queue>
using namespace std;
typedef long long ll;
const long long maxn = 2000 + 5;
const int INF = 1000000000;
int T,n,m,v,d[maxn];
struct node{
    int a, b, w;
}a[maxn];
int main() {
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        memset(d,0,sizeof(d));
        for(int i=1;i<=n;i++) scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].w);
            for(int j=1;j<=n;j++) {
                d[j] = (j == 1 ? a[j].w : INF);
                for(int k=1;k<j;k++) {
                    if(a[k].b<=a[j].b&&a[k].b>=a[j].a)
                    d[j] = min(d[j],d[k]+a[j].w);
                }
            }
        for(int i=1;i<=m;i++) {
            scanf("%d",&v);
            if(d[v]!=INF) printf("%d\n",d[v]);
            else printf("-1\n");
        }
    }
    return 0;
} 
                       
                           
                         
                             
                             
                           
                           
                             本文介绍了一个简单的动态规划问题,涉及路径选择与优化。通过分析路的最右侧位置,利用动态规划求解最优路径。文章提供了详细的代码实现,并推荐了进一步学习的DP题目。
本文介绍了一个简单的动态规划问题,涉及路径选择与优化。通过分析路的最右侧位置,利用动态规划求解最优路径。文章提供了详细的代码实现,并推荐了进一步学习的DP题目。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                  
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            