该题是一道比较简单拆点+最大流的题目,因为每个柱子都有一定的寿命,很容易将其对应成流量,那么处理结点容量的一般方法当然是拆点法 。该题反而对边的容量没有要求,为保险起见可以设成无穷大。 该题的思路很好想,建议独立编写代码 。
推荐题目: 点击打开链接 结点法的一些见解 也可以看这里。
细节参见代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 100000000;
const int maxn = 30 ;
int T,cnt,a,b,m,d,kase = 0,v,c,n;
struct Edge {
int from, to, cap, flow;
};
bool operator < (const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic {
int n, m, s, t;
vector<Edge> edges; // 边数的两倍
vector<int> G[maxn*maxn*4]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn*maxn*4]; // BFS使用
int d[maxn*maxn*4]; // 从起点到i的距离
int cur[maxn*maxn*4]; // 当前弧指针
void init(int n) {
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while(BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
}g;
char s[maxn][maxn];
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
m = strlen(s[1]+1);
g.init(n*m*3+5); //拆点
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) {
int v = s[i][j]-'0',id = (i-1)*m+j;
g.AddEdge(id,id+n*m,v);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(s[i][j] > '0') //连边
for(int x=-d;x<=d;x++) {
for(int y=abs(x)-d;y<=d-abs(x);y++) {
int xx = i+x , yy =j+y;
if(xx == i && yy == j) continue;
if(xx < 1 || xx > n || yy < 1 || yy > m) {
int id = (i-1)*m + j; //与汇点相连
g.AddEdge(id+n*m,3*n*m,INF);
}
else {
int id = (i-1)*m + j, id2 = (xx-1)*m + yy;
g.AddEdge(id+n*m,id2,INF);//连边
}
}
}
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
int cnt = 0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(s[i][j] == 'L') {
cnt++; //与源点相连,容量为1
int id = (i-1)*m + j;
g.AddEdge(0,id,1);
}
int ans = g.Maxflow(0,3*n*m);
if(cnt == ans) printf("Case #%d: no lizard was left behind.\n",++kase);
else if(cnt-ans == 1) printf("Case #%d: %d lizard was left behind.\n",++kase,cnt - ans);
else printf("Case #%d: %d lizards were left behind.\n",++kase,cnt - ans);
}
return 0;
}