flex 利用json读写数据

1 篇文章 0 订阅
由于一直用json开发,对json比较熟悉了,所以学习flex以后一直想做一个flex与json的开发,网上海一样的资源一直没找到合适的,今天偶然间搜到一篇文章才知道flex早就支持json解析。这里提供资源下载网站 
http://code.google.com/p/as3corelib/downloads/list 。顺便将例子上传上来希望对大家学习有帮助。 
举例如下: 
步骤1:到上面的链接中下载swc文件到lib包下 
步骤2:在webRoot下新建文件夹flexds,其下新建文件json.jsp 
Java代码   收藏代码
  1. json.jsp内容如下:  
  2.   
  3. <jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2">   
  4. <jsp:directive.page import="java.text.*"/>  
  5. <jsp:directive.page import="java.lang.*"/>  
  6. <jsp:directive.page contentType="text/json"/>  
  7.     [<jsp:scriptlet>  
  8.         <![CDATA[  
  9.             double compa = 1000.0;  
  10.             double compb = 900.0;  
  11.             for (int i = 0; i<=30; i++) {  
  12.             compa += ( Math.random() * 100 ) - 50;  
  13.             compb += ( Math.random() * 100 ) - 50;  
  14.             if ( i > 0 ) out.print( "," );  
  15.             ]]> </jsp:scriptlet>  
  16.             {"compa":<jsp:expression>compa</jsp:expression>,  
  17.             "compb":<jsp:expression>compb</jsp:expression>}<jsp:scriptlet>  
  18.             <![CDATA[ }  
  19.         ]]>  
  20.     </jsp:scriptlet>  
  21. ]  
  22. </jsp:root>  

Java代码   收藏代码
  1. 步骤3:下面做测试文件flexSrc下新建jsondg.mxml文件,内容如下:  
  2. <?xml version="1.0" encoding="utf-8"?>  
  3. <mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"  
  4.                 layout="vertical"  
  5.                 creationComplete="jsonservice.send()">  
  6.     <mx:Script>  
  7.         <![CDATA[  
  8.             import mx.rpc.events.ResultEvent;  
  9.             import com.adobe.serialization.json.JSONDecoder;  
  10.             import mx.controls.Alert;  
  11.   
  12.             private function onJSONResult(event:ResultEvent):void  
  13.             {  
  14.                 var data:String=event.result.toString();  
  15.                   
  16.                 data=data.replace(/\s/g, '');  
  17.                 var jd:JSONDecoder=new JSONDecoder(data);  
  18.                 dg.dataProvider=jd.getValue();  
  19.             }  
  20.         ]]>  
  21.     </mx:Script>  
  22.     <mx:HTTPService id="jsonservice"  
  23.                     url="http://localhost:8080/felxDOC/flexds/json.jsp"  
  24.                     resultFormat="text"  
  25.                     result="onJSONResult(event)"/>  
  26.     <mx:Panel title="Stock Data "  
  27.               width="100% "  
  28.               height="100% ">  
  29.         <mx:DataGrid id="dg"  
  30.                      width="100%"  
  31.                      height="100%">  
  32.             <mx:columns>  
  33.                 <mx:DataGridColumn dataField="compa"/>  
  34.                 <mx:DataGridColumn dataField="compb"/>  
  35.             </mx:columns>  
  36.         </mx:DataGrid>  
  37.     </mx:Panel>  
  38. </mx:Application>  
【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值