深入研究B树索引(五)续

转载 2013年12月04日 14:14:31

5.3 重建B树索引对于查询性能的影响

       最后我们来看一下重建索引对于性能的提高到底会有什么作用。假设我们有一个表,该表具有1百万条记录,占用了100000个数据块。而在该表上存在一个索引,在重建之前的pct_used为50%,高度为3,分支节点块数为40个,再加一个根节点块,叶子节点数为10000个;重建该索引以后,pct_used为90%,高度为3,分支节点块数下降到20个,再加一个根节点块,而叶子节点数下降到5000个。那么从理论上说:

1)  如果通过索引获取单独1条记录来说:

重建之前的成本:1个根+1个分支+1个叶子+1个表块=4个逻辑读

重建之后的成本:1个根+1个分支+1个叶子+1个表块=4个逻辑读

性能提高百分比:0

2)  如果通过索引获取100条记录(占总记录数的0.01%)来说,分两种情况:

最差的clustering_factor(即该值等于表的数据行数):

重建之前的成本:1个根+1个分支+0.0001*10000(1个叶子)+100个表块=103个逻辑读

重建之后的成本:1个根+1个分支+0.0001*5000(1个叶子)+100个表块=102.5个逻辑读

性能提高百分比:0.5%(也就是减少了0.5个逻辑读)

最好clustering_factor(即该值等于表的数据块):

重建之前的成本:1个根+1个分支+0.0001*10000(1个叶子)+0.0001*100000(10个表块)=13个逻辑读

重建之后的成本:1个根+1个分支+0.0001*5000(1个叶子)+0.0001*100000(10个表块)=12.5个逻辑读

性能提高百分比:3.8%(也就是减少了0.5个逻辑读)

3)  如果通过索引获取10000条记录(占总记录数的1%)来说,分两种情况:

最差的clustering_factor(即该值等于表的数据行数):

重建之前的成本:1个根+1个分支+0.01*10000(100个叶子)+10000个表块=10102个逻辑读

重建之后的成本:1个根+1个分支+0.01*5000(50个叶子)+10000个表块=10052个逻辑读

性能提高百分比:0.5%(也就是减少了50个逻辑读)

最好clustering_factor(即该值等于表的数据块):

重建之前的成本:1个根+1个分支+0.01*10000(100个叶子)+0.01*100000(1000个表块)=1102个逻辑读

重建之后的成本:1个根+1个分支+0.01*5000(50个叶子)+0.01*100000(1000个表块)=1052个逻辑读

性能提高百分比:4.5%(也就是减少了50个逻辑读)

4)  如果通过索引获取100000条记录(占总记录数的10%)来说,分两种情况:

最差的clustering_factor(即该值等于表的数据行数):

重建之前的成本:1个根+1个分支+0.1*10000(1000个叶子)+100000个表块=101002个逻辑读

重建之后的成本:1个根+1个分支+0.1*5000(500个叶子)+100000个表块=100502个逻辑读

性能提高百分比:0.5%(也就是减少了500个逻辑读)

最好clustering_factor(即该值等于表的数据块):

重建之前的成本:1个根+1个分支+0.1*10000(1000个叶子)+0.1*100000(10000个表块)=11002个逻辑读

重建之后的成本:1个根+1个分支+0.1*5000(500个叶子)+0.1*100000(10000个表块)=10502个逻辑读

性能提高百分比:4.5%(也就是减少了500个逻辑读)

5)  对于快速全索引扫描来说,假设每次获取8个数据块:

重建之前的成本:(1个根+40个分支+10000个叶子)/ 8=1256个逻辑读

重建之后的成本:(1个根+40个分支+5000个叶子)/ 8=631个逻辑读
性能提高百分比:49.8%(也就是减少了625个逻辑读)

       从上面有关性能提高的理论描述可以看出,对于通过索引获取的记录行数不大的情况下,索引碎片对于性能的影响非常小;当通过索引获取较大的记录行数时,索引碎片的增加可能导致对于索引逻辑读的增加,但是索引读与表读的比例保持不变;同时,我们从中可以看到,clustering_factor对于索引读取的性能有很大的影响,并且对于索引碎片所带来的影响具有很大的作用;最后,看起来,索引碎片似乎对于快速全索引扫描具有最大的影响。

       我们来看两个实际的例子,分别是clustering_factor为最好和最差的两个例子。测试环境为8KB的数据块,表空间采用ASSM的管理方式。先做一个最好的clustering_factor的例子,创建测试表并填充1百万条数据。

SQL> create table rebuild_test(id number,name varchar2(10));

SQL> begin

  2      for i in 1..1000000 loop

  3          insert into rebuild_test values(i,to_char(i));

  4              if mod(i,10000)=0 then

  5                  commit;

  6              end if;

  7      end loop;

  8  end;

  9  /

       该表具有1百万条记录,分布在2328个数据块中。同时由于我们的数据都是按照顺序递增插入的,所以可以知道,在id列上创建的索引都是具有最好的clustering_factor值的。我们运行以下查询测试语句,分别返回1、100、1000、10000、50000、100000以及1000000条记录。

select * from rebuild_test where id = 10;

select * from rebuild_test where id between 100 and 199;

select * from rebuild_test where id between 1000 and 1999;

select * from rebuild_test where id between 10000 and 19999;

select /*+ index(rebuild_test) */ * from rebuild_test where id between 50000 and 99999;

select /*+ index(rebuild_test) */ * from rebuild_test where id between 100000 and 199999;

select /*+ index(rebuild_test) */ * from rebuild_test where id between 1 and 1000000;

select /*+ index_ffs(rebuild_test) */ id from rebuild_test where id between 1 and 1000000;

       在运行这些测试语句前,先创建一个pctfree为50%的索引,来模拟索引碎片,分析并记录索引信息。

SQL> create index idx_rebuild_test on rebuild_test(id) pctfree 50;

SQL> exec dbms_stats.gather_table_stats(user,'rebuild_test',cascade=>true);

然后运行测试语句,记录每条查询语句所需的时间;接下来以pctfree为10%重建索引,来模拟修复索引碎片,分析并记录索引信息。

SQL> alter index idx_rebuild_test rebuild pctfree 10;

SQL> exec dbms_stats.gather_table_stats(user,'rebuild_test',cascade=>true);

接着再次运行这些测试语句,记录每条查询语句所需的时间。下表显示了两个索引信息的对比情况。

pctfree

Height

blocks

br_blks

lf_blks

pct_used

clustering_factor

50%

3

4224

8

4096

49%

2326

10%

3

2304

5

2226

90%

2326

下表显示了不同的索引下,运行测试语句所需的时间对比情况。

记录数

占记录总数的百分比

pctused(50%)

pctused(90%)

性能提高百分比

1条记录

0.0001%

0.01

0.01

0.00%

100条记录

0.0100%

0.01

0.01

0.00%

1000条记录

0.1000%

0.01

0.01

0.00%

10000条记录

1.0000%

0.02

0.02

0.00%

50000条记录

5.0000%

0.06

0.06

0.00%

100000条记录

10.0000%

1.01

1.00

0.99%

1000000条记录

100.0000%

13.05

11.01

15.63%

1000000条记录(FFS)

100.0000%

7.05

7.02

0.43%

       上面是对最好的clustering_factor所做的测试,那么对于最差的clustering_factor会怎么样呢?我们将rebuild_test中的id值反过来排列,也就是说,比如对于id为3478的记录,将id改为8743。这样的话,就将把原来按顺序排列的id值彻底打乱,从而使得id上的索引的clustering_factor变成最差的。为此,我写了一个函数用来反转id的值。

create or replace function get_reverse_value(id in number) return varchar2 is

  ls_id varchar2(10);

  ls_last_item varchar2(10);

  ls_curr_item varchar2(10);

  ls_zero varchar2(10);

  li_len integer;

  lb_stop boolean;

begin

  ls_id := to_char(id);

  li_len := length(ls_id);

  ls_last_item := '';

  ls_zero := '';

  lb_stop := false;

  while li_len>0 loop

        ls_curr_item := substr(ls_id,li_len,1);

        if ls_curr_item = '0' and lb_stop = false then

            ls_zero := ls_zero || ls_curr_item;

        else

            lb_stop := true;

            ls_last_item:=ls_last_item||ls_curr_item;

        end if;

        ls_id := substr(ls_id,1,li_len-1);

        li_len := length(ls_id);

  end loop;

  return(ls_last_item||ls_zero);

end get_reverse_value;

       接下来,我们创建我们第二个测试的测试表。并按照与第一个测试案例相同的方式进行测试。注意,对于测试查询来说,要把表名(包括提示里的)改为rebuild_test_cf。

SQL> create table rebuild_test_cf as select * from rebuild_test;

SQL> update rebuild_test_cf set name=get_reverse_value(id);

<p class="a" style="b

相关文章推荐

bitmap索引的深入研究

位图(bitmap)索引是另外一种索引类型,它的组织形式与B树索引相同,也是一棵平衡树。与B树索引的区别在于叶子节点里存放索引条目的方式不同。从前面我们知道,B树索引的叶子节点里,对于表里的每个数据行...

bitmap索引的深入研究(自我改版)

bitmap索引的深入研究 上一篇 / 下一篇  2008-06-10 17:28:21 / 个人分类:工作技术 查看( 952 ) / 评论( 9 ) / 评分( 30 / 1 ) 位图...
  • haiross
  • haiross
  • 2013年10月08日 15:52
  • 720

深入研究B树索引(四)续

4.2 B树索引的对于删除(DELETE)的管理        上面介绍了有关插入键值时索引的管理机制,那么对于删除键值时会怎么样呢? 在介绍删除索引键值的机制之前,先介绍与索引相关的一个比较重要...

深入研究B树索引(五)

5.     重建B树索引 5.1 如何重建B树索引 重建索引有两种方法:一种是最简单的,删除原索引,然后重建;第二种是使用ALTER INDEX … REBUILD 命令对索引进行重建。第二...

深入研究B树索引

  • 2011年11月09日 15:41
  • 359KB
  • 下载

深入研究B树索引(一)

深入研究B树索引(一) 上一篇 / 下一篇  2008-05-27 13:03:41 / 个人分类:工作技术 查看( 14381 ) / 评论( 61 ) / 评分( 146 / 82 ) ...

深入研究B树索引(三、四)

3.     B树索引的访问 我们已经知道了B树索引的体系结构,那么当oracle需要访问索引里的某个索引条目时,oracle是如何找 到该索引条目所在的数据块的呢?        当orac...

深入研究B树索引(二)

2.     B树索引的内部结构 我们可以使用如下方式将B树索引转储成树状结构的形式而呈现出来: alter session set events 'immediate trace name t...

管理索引表:深入研究B树索引--B树索引的相关概念

索引概述   索引与表一样,也属于段(segment)的一种。里面存放了用户的数据,跟表一样需要占用磁盘空间。只不过,在索引里的数据存放形式与表里的数据存放形式非常的不一样。在理解索引时,可以想象一...

cocos2d-x box2d物理引擎深入研究 第一篇之旋转关节详解(b2RevoluteJoint)

对于旋转关节场常见的包括如下: 滚轮或滚筒链条或悬桥(使用多个旋转连接器)破布娃娃的关节转门,弹射器,杠杆 创建旋转关节 创建旋转关节首先设置b2RevoluteJointDef属性,然后用...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深入研究B树索引(五)续
举报原因:
原因补充:

(最多只允许输入30个字)