翁童 跨越梦想和理想的尺度

原创 2006年06月14日 23:21:00

在不断成长中学会自卑,在不断学习中认识无知,在不断实践中结识无能,在夹缝中求生存!

做一名网络安全专家和CEO是我一生不变的理想!

在自卑中奋起!

 

今天我算知道了,如何去面对今天与明天!

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

尺度不变特征转换SIFT

The Scale-Invariant Feature Transform (SIFT) bundles a feature detector and a feature descriptor. Th...

级联分类器(Adaboost)之《多尺度尺寸的计算方法》

最近有人问我:在级联分类器中,如何根据设定的参数来计算多尺度的问题。并给我看了一篇网上找来的文章(里面展示的尺度尺寸有无),让我给讲解下:        多尺度尺寸的计算  主要是下面这个循环: ...

基于R-CNN的多尺度改进方法概述

前言:博主目前的研究课题为“可见光遥感图像目标检测”,研究兴趣是大尺寸高分辨率遥感图像上多尺度目标及小物体检测。为了整理阅读过的文献,梳理研究思路,记录自己的理解感悟,遂开启一个“物体检测系列博客”。...

逻辑斯蒂回归3 -- 最大熵模型之改进的迭代尺度法(IIS)

声明:          1,本篇为个人对《2012.李航.统计学习方法.pdf》的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址)。      ...

多尺度R-CNN(2): Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural

CNN高层特征具有丰富的语义信息,低层特征具有较高空间分辨率,研究如何融合不同层之间的特征,是物体检测领域热门的方向。近期很多工作通过融合多层来提升检测和分割的性能,按照融合与预测的先后顺序,分类为早...

基于多尺度深度网络的单幅图像深度估计-NIPS 2014

基于多尺度深度网络的单幅图像深度估计 原文地址:http://blog.csdn.net/hjimce/article/details/50569474 作者:hjimce 一、...

白手起家学习数据科学 ——处理数据之“尺度变换篇”(七)

尺度变化(Rescaling)许多技术对数据尺度很敏感。例如,设想一下,你有包含数百数据科学家身高(height)、体重(weight)的数据集,你正在尝试对其进行聚类。直观上,我们想要聚集区表示彼此...

统计学习之---多尺度变换 MDS (Multidimensional Scaling)

Multidimensional Scaling (MDS)The idea is to find a set of k-dimensional continuous variables to rep...

尺度空间(Scale space)理论

尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征。尺度空间方法将传统的单尺度视觉信息...

msrcr(Multi-Scale Retinex with Color Restoration) 带色彩恢复的多尺度视网膜增强算法 整理

本文主要总结整理msrcr算法相关,包括基本原理,效果和实现代码
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)