利用OpenCV的级联分类器类CascadeClassifier和Haar特征实现人脸区域的检测

级联分类器是将若干个分类器进行连接,从而构成一种多项式级的强分类器。级联分类器使用前要先进行训练,怎么训练呢?用目标的特征值去训练,对于人脸来说,通常使用Haar特征进行训练

Haar特征是由M.Oren,C.Papageorgious等人在论文“Pedestrian detection using wavelet templates”中首次提出的,后续经过改进与发展,C.H.Messom和A.L.Barczak提出了积分直方加速Harr特征的计算方法,R.Lienhart,J.Maydt等人提出了Haar特征的多个模板种类,后逐步形成OpenCV中的Haar分类器。Haar特征也称Haar-like特征,是一种简单且高效的图像特征,其基于矩形区域相似的强度差异Haar小波。Haar特征的特点为:高类的可变性;低类的可变性;而向局部的强度差异;多尺度不变性计算效率高

OpenCV提供了用于检测目标物体的级联分类器类CascadeClassfier,其检测函数的原型及参数意义如下

void detectMultiScale( InputArray image,CV_OUT std::vector<Rect>& objects,double scaleFactor = 1.1,int minNeighbors = 3, int flags = 0,Size minSize =Size(),Size maxSize = Size() );

image:当然是输入图像了,要求是8位无符号图像,即灰度图。

objects:输出向量容器(保存检测到的物体矩阵)

scaleFactor:每张图像缩小的尽寸比例

minNeighbors:每个候选矩阵应包含的像素领域

flags:表示此参数模型是否更新标志位;

minSize :表示最小的目标检测尺寸;

maxSize:表示最大的目标检测尺寸;

利用Haar特征训练的级联分类器对人脸进行检测的代码如下

代码中用到的根据Haar特征训练出的级联分类器初始化数据xml文件下载链接如下:

链接:https://pan.baidu.com/s/1HJ_E1Oq2bVENnIQ40YoRYg 
提取码:5t7i 

//OpenCV版本3.0.0    

//exe文件运行前,请把初始化XML文件放入相关工程文件下
//该程序现在不能识别戴上眼镜的脸部,因为对脸部区域的确认是能过是否有眼睛进一步确认的

#include <opencv2/opencv.hpp>   
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
CascadeClassifier face_cascade, eyes_cascade;
String window_name = "Face Detection";
void detectFaces(Mat frame) {
  std::vector<Rect> faces;
  Mat frame_gray;
  // 灰度变换
  cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
  // 直方图均衡
  equalizeHist(frame_gray, frame_gray);
  // 多尺度人脸检测
  face_cascade.detectMultiScale(frame_gray, faces,
     1.1, 3,0|CASCADE_SCALE_IMAGE, Size(30, 30));
  // 人脸检测结果判定
  for(size_t i = 0; i < faces.size(); i++)
  {
    // 检测到人脸中心
    Point center(faces[i].x + faces[i].width/2, 
      faces[i].y + faces[i].height/2);
    Mat face = frame_gray(faces[i]);
    std::vector<Rect> eyes;
    // 在人脸区域检测人眼
    eyes_cascade.detectMultiScale(face, eyes, 1.1, 2,
				  0 |CASCADE_SCALE_IMAGE, Size(30, 30) );
    if(eyes.size() > 0)
      // 绘制人脸
      ellipse(frame, center, Size(faces[i].width/2, 
        faces[i].height/2),
	      0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
  }
  imshow( window_name, frame );
}
int main() 
{
  // 摄像头读取
  VideoCapture cap(0); 
  Mat frame;
  // 初始化haar级联人脸分类器XML
  face_cascade.load("haarcascade_frontalface_alt.xml"); 
  // 初始化haar级联人眼分类器XML
  eyes_cascade.load("haarcascade_eye_tree_eyeglasses.xml"); 
  while(cap.read(frame)) 
  {
    // 人脸检测
    detectFaces(frame); 

	//等待30ms,如果有按键按下,则返回按值值,即非0值,如果30ms没有按键按下,则返回-1值
    if( waitKey(30) >= 0)    
      break;
  }
  return 0;
}

运行结果如下图所示

补充说明一下

//exe文件运行前,请把初始化XML文件放入相关工程文件下
//该程序现在不能识别戴上眼镜的脸部,因为对脸部区域的确认是能过是否有眼睛进一步确认的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值