关闭

[LibreOJ β Round]ZQC的拼图

203人阅读 评论(0) 收藏 举报
分类:

题目描述

ZQC 和他的妹子在玩拼图。她们有 n (1≤n≤100) n \ (1 \leq n \leq 100) n (1≤n≤100) 块神奇的拼图,还有一块拼图板。拼图板是一个 m×m (1≤m≤100) m \times m \ (1 \leq m \leq 100) m×m (1≤m≤100) 的正方形网格,每格边长为 1,如图所示。每块拼图都是直角三角形,正面为白色,反面为黑色,拼图放在拼图板上时,必须正面朝上,直角顶点必须与拼图板上的一个格点重合,两条直角边分别向左和向下。拼图可以重叠在一起。拼图的左下部分可以超过拼图板的边界,如图所示。

这些拼图有一个好,就是能伸缩,当然,拼图伸缩是要按基本法来的,具体说来就是:你可以选择一个正整数 kkk,并使所有拼图的每条边长都变成原来的 kkk 倍。

妹子摆好拼图后,ZQC 需要控制一个小人从拼图板的左下角跑到右上角,小人路线上的任何一点(包括端点)都要在某块拼图板上(边界或顶点也可以),现在 ZQC 想知道他的妹子最少要把拼图的边长扩大到原来的几倍才存在一种摆放方式使得他能找到这样一条路线。

DP

我们二分答案k,然后尝试判定。
对于一块拼图,如果直角顶点放在(x,y),能覆盖那些(x-x’,y-y’)呢?
我们不妨对于这个拼图的每一行选择最大的y’,这样得到n个(x’,y’)。
现在问题变成分组背包,每组至多选择一个二元组,使得第一维和为m,第二维和>=m。
就是这样。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef double db;
const int maxn=100+10;
int f[maxn][maxn],a[maxn],b[maxn];
int i,j,k,l,r,mid,t,n,m;
db x,y;
bool check(int ans){
    fo(i,0,n)
        fo(j,0,m)
            f[i][j]=-1000000000;
    f[0][0]=0;
    fo(i,1,n){
        fo(j,0,min(ans/b[i],m)){
            x=(db)ans/a[i];
            //y=(db)((db)ans/b[i]-j)*((db)ans/a[i])/((db)ans/b[i]);
            y=(db)b[i]/a[i]*((db)ans/b[i]-(db)j);
            t=floor(y);
            fo(k,j,m)
                f[i][k]=max(f[i][k],f[i-1][k-j]+t);
        }
    }
    if (f[n][m]>=m) return 1;else return 0;
}
int main(){
    scanf("%d%d",&n,&m);
    fo(i,1,n) scanf("%d%d",&a[i],&b[i]);
    l=1;r=200000000;
    while (l<r){
        mid=(l+r)/2;
        if (check(mid)) r=mid;else l=mid+1;
    }
    printf("%d\n",l);
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:251515次
    • 积分:10098
    • 等级:
    • 排名:第1813名
    • 原创:743篇
    • 转载:4篇
    • 译文:0篇
    • 评论:188条
    最新评论
    文章分类