关闭

Hprof使用及在Hadoop中MR任务使用

2454人阅读 评论(0) 收藏 举报

J2SE中提供了一个简单的命令行工具来对java程序的cpu和heap进行 profiling,叫做HPROF。HPROF实际上是JVM中的一个native的库,它会在JVM启动的时候通过命令行参数来动态加载,并成为 JVM进程的一部分。若要在java进程启动的时候使用HPROF,用户可以通过各种命令行参数类型来使用HPROF对java进程的heap或者 (和)cpu进行profiling的功能。HPROF产生的profiling数据可以是二进制的,也可以是文本格式的。这些日志可以用来跟踪和分析 java进程的性能问题和瓶颈,解决内存使用上不优的地方或者程序实现上的不优之处。二进制格式的日志还可以被JVM中的HAT工具来进行浏览和分析,用 以观察java进程的heap中各种类型和数据的情况。

在J2SE 5.0以后的版本中,HPROF已经被并入到一个叫做Java Virtual Machine Tool Interface(JVM TI)中。


HPROF的启用



HPROF可以用来展示和跟踪cpu的使用情况,内存分配的统计数据等。不仅如此,它还支持对 java进程完整的内存dump,所有线程的monitor stats数据。HPROF被启用的方式可以如下: 
java -agentlib:hprof[=options] ToBeProfiledClass 
或者 
java -Xrunhprof[:options] ToBeProfiledClass 
HPROF如何构建java进程,并发送进程的jvm profiling信息,取决于HPROF在JVM启动时从命令行获取的参数指令。比如,以下指令将会获取java进程的heap allocation的profile: 
java -agentlib:hprof=heap=sites ToBeProfiledClass 

HPROF 可以被指定的参数非常的多,以下是完整的列表: 

java -agentlib:hprof=help 


        HPROF: Heap and CPU Profiling Agent (JVM TI Demonstration Code) 

    hprof usage: java -agentlib:hprof=[help]|[<option>=<value>, ...] 

    Option Name and Value  Description                    Default 
    ---------------------  -----------                    ------- 
    heap=dump|sites|all    heap profiling                 all 
    cpu=samples|times|old  CPU usage                      off 
    monitor=y|n            monitor contention             n 
    format=a|b             text(txt) or binary output     a 
    file=<file>            write data to file             java.hprof[.txt] 
    net=<host>:<port>      send data over a socket        off 
    depth=<size>           stack trace depth              4 
    interval=<ms>          sample interval in ms          10 
    cutoff=<value>         output cutoff point            0.0001 
    lineno=y|n             line number in traces?         y 
    thread=y|n             thread in traces?              n 
    doe=y|n                dump on exit?                  y 
    msa=y|n                Solaris micro state accounting n 
    force=y|n              force output to <file>         y 
    verbose=y|n            print messages about dumps     y 

    Obsolete Options 
    ---------------- 
    gc_okay=y|n 

    Examples 
    -------- 
     - Get sample cpu information every 20 millisec, with a stack depth of 3: 
         java -agentlib:hprof=cpu=samples,interval=20,depth=3 classname 
     - Get heap usage information based on the allocation sites: 
         java -agentlib:hprof=heap=sites classname 

默认情况下,java进程profiling的信息(sites和dump)都会被 写入到一个叫做java.hprof.txt的文件中。大多数情况下,该文件中都会对每个trace,threads,objects包含一个ID,每一 个ID代表一个不同的观察对象。通常,traces会从300000开始。 

默认,force=y,会将所有的信息全部输出到output文件中,所以如果含有 多个JVMs都采用的HRPOF enable的方式运行,最好将force=n,这样能够将单独的JVM的profiling信息输出到不同的指定文件。 

interval选项只在 cpu=samples的情况下生效,表示每隔多少毫秒对java进程的cpu使用情况进行一次采集。 

msa选项仅仅在Solaris系统下才有效, 表示会使用Solaris下的Micro State Accounting功能 

Examples



我们可以自己写一个java应用程序,但是例子 里将使用一个J2SE中已有的java应用程序,javac。 

Heap Allocation Profiles(heap=sites)



以下是对一个java代码文件运行java编译 器javac的heap allocation profile日志的一部分: 
Command used: javac -J-agentlib:hprof=heap=sites Hello.java 
从日志中可以看到程序在运行的每一个部分都消耗了多少内存的heap profile数据。以上日志可以看出,整个程序的heap中有44.73%的被分配给了java.util.zip.ZipEntry对象。同时可以观 察到,live data的数量跟所有allocated的总数是匹配atch的,这就说明GC可能在HPROF遍历整个heap搜集信息的很短的时间之前已经做过一次内 存回收了。通常情况下,live data的数量是会稍微少于所有allocated的总数的。 
    
Heap Dump (heap=dump)



该选项用来对java进程的heap进行进行完 全的dump: 
Command used: javac -J-agentlib:hprof=heap=dump Hello.java 
这样会产生一个非常大的输出文件,但是可以用任 何编辑器进行打开和搜索。但是,更好的观察和分析办法是通过HAT来进行分析和观察。所有用heap=sites选项中获取的信息这里也都可以获取到。另 外还加上一些特别的细节数据。如对每个对象的内存分配以及其引用的其他所有的对象。 
该选项会使用很多的内存,因为它会将所有对象的 内存分配情况全部记录下来,同时也可能会影响到应用程序本身的性能,因为数据的产生会影响对象分配和资源回收。 

CPU Usage Sampling Profiles (cpu=samples)



HPROF可以用来搜集java进程中各个threads的cpu使用情况: 
HPROF会对java进程中所有的threads进行周期性的stack traces采集。以上count一列就表示在采集中有多少次的stack trace被HPROF发现,并且是active的(而不是指一个method被执行了多少次)。这些stack traces包括cpu的使用,哪些是cpu消耗热点。 
那么以上日志中可以看出什么信息呢?第一,统计数据的样本数据是很少的,只有126次的采样,如 果是比较大的程序编译,那么应该能够产生更有代表性的数据。第二,该数据跟以上对heap=sites的采集数据比较匹配,ZipFile耗费了比较多的 cpu时间和调用次数。在以上采集中,可以发现,跟ZipFile相关的的性能在javac中都会消耗的比较高,该ZipFile的stack trace如下:  

CPU Usage Times Profile (cpu=times)



HPROF可以通过对java应用程序的各个方 法中注入code的方式来搜集各个method的执行情况。对每个methods的执行情况进行跟踪,count以及时间消耗的搜集。这种技术叫做 Byte Code Injection。所以这种采集方式的运行比cpu=samples要慢很多,以下是采集数据日志:  
这里的count代表着该方法被真正执行了多少次,并且方法thread消耗了多少精确的cpu 时间。


Hadoop中MR任务使用

使用方法:

  在JobConf中,有几个配置选项是可以用来控制task profiling行为的。比如对一个job,想要开启对其tasks的profiling功能,并设置profiling相应的HPROF参数,可以按如下方式:

 

conf.setProfileEnabled(true);
conf.setProfileParams("-agentlib:hprof=cpu=samples,heap=sites,depth=6," +
"force=n,thread=y,verbose=n,file=%s");
conf.setProfileTaskRange(true, "0-2");

第一行表示打开profiling task的功能,该功能默认情况下是关闭的。调用该接口相当于设置配置选项 mapred.task.profile=true,可以利用这种方式在hadoop job提交命令行上动态指定。

 

第二行是通过conf接口来设置对tasks进行HPROF 的profiling的采集参数,采用profiling enable的方式运行的tasks,会采用每个task一个独立的JVM的运行方式运行(即使enable了job的jvm reuse功能)。HPROF相关的采集参数设置,可以见其他资料。该选项也可以通过设置 mapred.task.profile.params 选项来指定。

 

第三行表示对job的哪些tasks需要进行profiling采集,第一true参数表示采集的是map tasks的性能数据,false的话表示采集reduce的性能数据,第二个参数表示只采集编号为0,1,2的tasks的数据,(默认为0-2)。如果想要采集除2,3,5编号的tasks,可以设置该参数为: 0-1,4,6-

 

Example

   还是拿wordcount来举例,提交job命令如下:

 

bin/hadoop jar hadoop-examples-0.20.2-luoli.jar wordcount /
  -D mapred.reduce.tasks=10 /
  -D keep.failed.task.files=fales /
  -D mapred.task.profile=true /
  -D mapred.task.profile.params="-agentlib:hprof=cpu=samples,heap=sites,depth=6,force=n,thread=y,verbose=n,file=%s" /
  $input /
  $output

 

这样,当job运行时,就会对前三个task进行profiling的采集,采集信息包括cpu的采样信息,内存分配的信息数据,stack trace 6层的堆栈信息。这里需要注意的是,由于前三个tasks被进行了HPROF的性能采样,所以这几个tasks的执行效率会受到一定的影响,profiling的信息越详细,性能影响就越大。如下图,前三个map就明显比其他的map运行的要慢很多。

不过这种运行方式通常都不是线上运行方式,而是用来进行优化调试,所以关系不大。

 

而当job运行完成后,这三个tasks对应的profiling日志也会会传到提交机器上,供用户分析判断。如下图:

 

与此同时,tasks在tasktracker上也将这些profiling日志信息记录到了一个profile.out的日志文件中,该文件通常位于tasktracker机器上的上${HADOOP_HOME}/logs/userlogs/${attempt_id}下,和该task的stderr,stdout,syslog保存在同一个目录下,如下图:

 

该文件中的内容,还可以通过taskdetails.jsp的页面查看到。如下图:

 

 

有了这些信息,相信对于任何一位hadoop应用程序的开发者来说,就拥有了足够的定位job瓶颈的信息了。MR的应用程序开发同学,请优化您的job吧~~


0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:599012次
    • 积分:6344
    • 等级:
    • 排名:第3830名
    • 原创:72篇
    • 转载:63篇
    • 译文:2篇
    • 评论:113条
    文章分类