UVA 10779 【maximum flow】

原创 2016年05月31日 23:07:18

Thought :

We consider Bob as source ,  then according to what bob has, we add_edge between Bob and stickers with weight number[sticker]. When it comes to his friends, since they will keep at least one sticker for each kind they have originally, if(number[sticker] > 1) we add_edge from friendA to certain sticker with weight number[sticker]-1. When friendA don't have certain sticker,add_edge from sticker that he doesn't have to him with weight 1to make sure he can only get one sticker of this kind.

At last, for each sticker, add_edge from sticker to t(sink)(which has been pre-defined) with weight 1.(to get maximum number of kinds of stickers).

CALCULATE MAXIMUM FLOW AND THAT'S THE ANSWER.


AC code:

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define bob 0

#define t 99
#define MIN(a,b) ((a)<(b)?(a):(b))
using namespace std;


int f[1000];
struct edge{
	int v, nxt, w;
};
edge E[1000];
int total_edge;
int head[100];
void add_edge(int u, int v, int w)
{
	E[total_edge].v = v;
	E[total_edge].w = w;
	E[total_edge].nxt = head[u];
	head[u] = total_edge++;
}
int d[100];
bool bfs(int S, int T)
{
	int u, v;
	memset(d, -1, sizeof(d));
	queue<int> q;
	d[S] = 0;
	q.push(S);
	while (!q.empty())
	{
		u = q.front();
		q.pop();
		for (int e = head[u]; e != -1; e = E[e].nxt)
		{
			v = E[e].v;
			if (d[v] == -1 && E[e].w > f[e])
			{
				d[v] = d[u] + 1;
				q.push(v);
			}
		}
	}
	return d[T] >= 0;
}
int dinic(int u, int T, int sum)
{
	if (u == T) return sum;
	int v, tp = sum;
	for (int e = head[u]; e != -1; e = E[e].nxt)
	{
		v = E[e].v;
		if (d[v] == d[u] + 1 && E[e].w > f[e])
		{
			int canflow = dinic(v, T, MIN(sum, E[e].w - f[e]));
			f[e] += canflow;
			f[e ^ 1] -= canflow;
			sum -= canflow;
		}
		
	}
	return tp - sum;
}
int maxflow(int S,int T)
{
	int ans = 0;
	while (bfs(S, T))
	{
		ans += dinic(S, T, 1000000);
	}
	return ans;
	
}
int ppl_sticker[11][27];
int main()
{
	//freopen("in.txt", "r", stdin);
	int n, T, m;
	cin >> T;
	for (int i = 1; i <= T; i++)
	{
		memset(ppl_sticker, 0, sizeof(ppl_sticker));
		memset(head, -1, sizeof(head));
		memset(f, 0, sizeof(f));
		total_edge = 0;
		scanf("%d%d", &n, &m);
		for (int j = 1; j <= n; j++)
		{
			int temp;
			cin >> ppl_sticker[j][0];
			for (int k = 1; k <= ppl_sticker[j][0]; k++)
			{
				cin >> temp;
				ppl_sticker[j][temp]++;
			}
		}
		for (int j = 1; j <= m; j++)
		{
			if (ppl_sticker[1][j])
			{
				add_edge(1, j + 1, ppl_sticker[1][j]);
				add_edge(j + 1, 1, 0);
			}
		}
		for (int j = 2; j <= n; j++)
		{
			for (int k = 1; k <= m; k++)
			{
				if (ppl_sticker[j][k] > 1)
				{
					add_edge(j+m, k+1, ppl_sticker[j][k] - 1);
					add_edge(k + 1, j+m, 0);
				}
				else if (ppl_sticker[j][k] == 0)
				{
					add_edge(k + 1, j + m, 1);
					add_edge(j + m, k+1, 0);
				}
			}

		}
		for (int j = 1; j <= m; j++)
		{
			add_edge(j + 1, t, 1);

			add_edge(t, j+1, 0);
		}
		int ans = maxflow(1, t);
		printf("Case #%d: %d\n", i, ans);
	}
	return 0;

}


版权声明:本文为博主原创文章,未经博主允许不得转载。

UVA 108 Maximum Sum(子矩阵最大和)

Maximum Sum  Background A problem that is simple to solve in one dimension is often ...
  • u011217342
  • u011217342
  • 2013年08月18日 10:17
  • 1038

uva 10594 Data Flow(最小费用流)

uva 10594 Data Flow (最小费用流) 题目大意: 运输数据从1到n,每条路的花费告诉你,以及路线的流量限定告诉你,问你最小花费 解题思路: 是一题裸的最小费用流,只不过是双向...
  • a1061747415
  • a1061747415
  • 2014年04月17日 23:12
  • 1234

Maximum Flow 练习:RookAttack,最大二分图匹配

题目:http://community.topcoder.com/stat?c=problem_statement&pm=1931&rd=4709 题目的难点在于将问题抽象成最大流问题,这个题目可...
  • xuzhezhaozhao
  • xuzhezhaozhao
  • 2014年03月25日 19:35
  • 1182

UVA 10779 - Collectors Problem(网络流)

题目链接:点击打开链接 思路: 我们以1~m建立一列结点,表示Bob的物品, 以2~n建立一列结点, 表示其他的人。 源点和1~m相连, 容量为Bob的初始数量; 汇点也和1~m相连, 容量为1,...
  • weizhuwyzc000
  • weizhuwyzc000
  • 2016年10月21日 16:05
  • 319

UVA 10779 Collectors Problem(最大流)

题意:有T(T≤20)组数据。Bob在与他的n−1(2≤n≤10)个同伴交换糖纸,一共有m(5≤m≤25)种糖纸。Bob希望能和同伴交换使得手上的糖纸数尽量多。他的同伴只会用手上的重复的交换手上没有的...
  • Just_Lm
  • Just_Lm
  • 2016年08月01日 23:06
  • 127

UVA10779 Collectors Problem(最大流)

白皮书上的练习题0 0 大意:Bob在与他的n−1(2≤n≤10)n-1(2 \leq n \leq 10)个朋友交换糖纸,一共有m(5≤m≤25)m(5 \leq m \leq 25)种糖纸。每个...
  • cqbzwja
  • cqbzwja
  • 2016年03月11日 11:56
  • 211

Maximum Flow 练习:RookAttack,最大二分图匹配

题目:http://community.topcoder.com/stat?c=problem_statement&pm=1931&rd=4709 题目的难点在于将问题抽象成最大流问题,这个题目可...
  • xuzhezhaozhao
  • xuzhezhaozhao
  • 2014年03月25日 19:35
  • 1182

【SPOJ-FASTFLOW】Fast Maximum Flow【最大流】

虽然数据很大,但是dinic可过。 注意开LL。 #include #include using namespace std; typedef long long LL; ...
  • BraketBN
  • BraketBN
  • 2016年02月17日 16:47
  • 214

uva 10594 Data Flow (最小费最大流+题目给的数据有错)

uva 10594 Data Flow题目大意:给出一张图,以及D, K,D代表所要传送的数据量,K代表每条边可以传送的数据量(就是容量),问在可以传送所有数据的前提下,最小耗费时间。解题思路:建一个...
  • llx523113241
  • llx523113241
  • 2015年07月24日 16:34
  • 504

UVa 10594 Data Flow(无向图的费用流)

题目链接:UVa 10594 Data Flow 无向图的费用流。 无向图,则必须使用邻接表,这样才能解决反向边的问题。 加一个点0,表示为起点,设置cap[0][1]=D(题目给的流量D),c...
  • fobdddf
  • fobdddf
  • 2014年04月02日 23:20
  • 360
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:UVA 10779 【maximum flow】
举报原因:
原因补充:

(最多只允许输入30个字)