关闭

图解贝叶斯公式

433人阅读 评论(0) 收藏 举报
分类:

概率,顾名思义其实就是一个比率。A发生的概率相当于A集的面积与全集总面积的比率。

贝叶斯概率

B发生的概率相当于B集的面积与全集总面积的比率。

AB都发生的概率相当于AB交集的面积与全集总面积的比率。

B已经发生条件下A发生的概率相当于AB交集的面积与B面积的比率。由于B已经发生,在这里是全集,所以要比上B的面积。

A已经发生条件下B发生的概率相当于AB交集的面积与A面积的比率。由于A已经发生,在这里是全集,所以要比上A的面积。

简单的公式推导得出AB交集的概率。

代入前面公式,得出著名的贝叶斯公式。

用贝叶斯公式直观解释为什么即使某疾病患者绝大部分检测为阳性,但一个人检测为阳性时,患该病的概率不一定很高。

全概率公式:(http://zh.wikipedia.org/zh-cn)

假设{ Bn : n = 1, 2, 3, ... } 是一个概率空间的有限或者可数无限的分割(既 Bn为一完备事件组),且每个集合Bn是一个可测集合,则对任意事件A全概率公式

Pr ( A ) = ∑ n Pr ( A ∩ B n ) {\displaystyle \Pr(A)=\sum _{n}\Pr(A\cap B_{n})\,} 点击打开链接

又因为

Pr ( A ∩ B n ) = Pr ( A ∣ B n ) Pr ( B n ) , {\displaystyle \Pr(A\cap B_{n})=\Pr(A\mid B_{n})\Pr(B_{n}),}

此处Pr(A | B)是B发生后A条件概率,所以全概率公式又可写作:

Pr ( A ) = ∑ n Pr ( A ∣ B n ) Pr ( B n ) . {\displaystyle \Pr(A)=\sum _{n}\Pr(A\mid B_{n})\Pr(B_{n}).\,}
全概率公式将对一复杂事件A的概率求解问题转化为了在不同情况或不同原因 Bn下发生的简单事件的概率的求和问题
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2192次
    • 积分:30
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:5篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档