图解贝叶斯公式

转载 2016年06月01日 11:58:56

概率,顾名思义其实就是一个比率。A发生的概率相当于A集的面积与全集总面积的比率。

贝叶斯概率

B发生的概率相当于B集的面积与全集总面积的比率。

AB都发生的概率相当于AB交集的面积与全集总面积的比率。

B已经发生条件下A发生的概率相当于AB交集的面积与B面积的比率。由于B已经发生,在这里是全集,所以要比上B的面积。

A已经发生条件下B发生的概率相当于AB交集的面积与A面积的比率。由于A已经发生,在这里是全集,所以要比上A的面积。

简单的公式推导得出AB交集的概率。

代入前面公式,得出著名的贝叶斯公式。

用贝叶斯公式直观解释为什么即使某疾病患者绝大部分检测为阳性,但一个人检测为阳性时,患该病的概率不一定很高。

全概率公式:(http://zh.wikipedia.org/zh-cn)

假设{ Bn : n = 1, 2, 3, ... } 是一个概率空间的有限或者可数无限的分割(既 Bn为一完备事件组),且每个集合Bn是一个可测集合,则对任意事件A全概率公式

Pr ( A ) = ∑ n Pr ( A ∩ B n ) {\displaystyle \Pr(A)=\sum _{n}\Pr(A\cap B_{n})\,} 点击打开链接

又因为

Pr ( A ∩ B n ) = Pr ( A ∣ B n ) Pr ( B n ) , {\displaystyle \Pr(A\cap B_{n})=\Pr(A\mid B_{n})\Pr(B_{n}),}

此处Pr(A | B)是B发生后A条件概率,所以全概率公式又可写作:

Pr ( A ) = ∑ n Pr ( A ∣ B n ) Pr ( B n ) . {\displaystyle \Pr(A)=\sum _{n}\Pr(A\mid B_{n})\Pr(B_{n}).\,}
全概率公式将对一复杂事件A的概率求解问题转化为了在不同情况或不同原因 Bn下发生的简单事件的概率的求和问题

机器学习实战---读书笔记: 第4章 基于概率论的分类而方法:朴素贝叶斯

内容来源于书《机器学习实战》 # *-* coding: utf-8 *-* ''' >---读书笔记: 第4章 基于概率论的分类而方法:朴素贝叶斯 关键: 1 基于贝叶斯决策理论的分类方法 ...

贝叶斯公式

  • 2011年12月19日 20:38
  • 37KB
  • 下载

AI数学基础(1)——贝叶斯公式

一、条件概率 二、乘法定理 三、划分 四、全概率公式 五、贝叶斯公式 六、总结...

贝叶斯公式的理解及应用(垃圾邮件过滤)

全概公式 贝叶斯公式 贝叶斯推断 过滤垃圾邮件 条件概率

条件概率的理解问题及贝叶斯公式

最近在学习统计信号处理,对条件概率的理解模糊,条件概率是概论中的一个重要而实用的概念。重新翻开概率论的课本,对条件该概率作进一步认识。 (一)条件概率: 首先是条件概率的定义: 设有事件A和事件B...

贝叶斯公式与搜索引擎

我们向搜索引擎提交一个查询,搜索引擎会从先到后列出大量的结果,这些结果排序的标准是什么呢?这个看似简单的问题,却是信息检索专家们研究的核心难题之一。   为了说明这个问题,我们来研究一个比搜索引擎更加...

无公式无代码白话朴素贝叶斯分类器

朴素贝叶斯用于文本分类的原理感觉已经很明白了,但是扔掉书本之后思路还是很混乱,在此进行一些梳理,方便复习。首先整体理解一下。朴素贝叶斯分类器实际上是一种产生式模型。所谓产生式模型就是模型并不是直接给出...

【机器学习】先验概率、后验概率、贝叶斯公式、 似然函数

Original url: http://m.blog.csdn.net/article/details?id=49130173 一、先验概率、后验概率、贝叶斯公式、 似然函数 在机器学...
  • junmuzi
  • junmuzi
  • 2016年04月19日 17:16
  • 6469
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图解贝叶斯公式
举报原因:
原因补充:

(最多只允许输入30个字)