KMP算法(1)-暴力匹配算法

转载 2016年08月29日 23:59:24

看的懵懵懂懂的,还是坚持copy一下
转载地址:http://blog.csdn.net/v_july_v/article/details/7041827

暴力匹配算法

假设现在我们面临这样一个问题:有一个文本串S,和一个模式串P,现在要查找P在S中的位置,怎么查找呢?

如果用暴力匹配的思路,并假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置,则有:

如果当前字符匹配成功(即S[i] == P[j]),则i++,j++,继续匹配下一个字符;
如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为0。
理清楚了暴力匹配算法的流程及内在的逻辑,咱们可以写出暴力匹配的代码,如下:
int ViolentMatch(char* s, char* p)  
{  
    int sLen = strlen(s);  
    int pLen = strlen(p);  

    int i = 0;  
    int j = 0;  
    while (i < sLen && j < pLen)  
    {  
        if (s[i] == p[j])  
        {  
            //①如果当前字符匹配成功(即S[i] == P[j]),则i++,j++      
            i++;  
            j++;  
        }  
        else  
        {  
            //②如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0      
            i = i - j + 1;  
            j = 0;  
        }  
    }  
    //匹配成功,返回模式串p在文本串s中的位置,否则返回-1  
    if (j == pLen)  
        return i - j;  
    else  
        return -1;  
}  

举个例子,如果给定文本串S“BBC ABCDAB ABCDABCDABDE”,和模式串P“ABCDABD”,现在要拿模式串P去跟文本串S匹配,整个过程如下所示:

1. S[0]为B,P[0]为A,不匹配,执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,S[1]跟P[0]匹配,相当于模式串要往右移动一位(i=1,j=0)


2. S[1]跟P[0]还是不匹配,继续执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,S[2]跟P[0]匹配(i=2,j=0),从而模式串不断的向右移动一位(不断的执行“令i = i - (j - 1),j = 0”,i从2变到4,j一直为0)

3. 直到S[4]跟P[0]匹配成功(i=4,j=0),此时按照上面的暴力匹配算法的思路,转而执行第①条指令:“如果当前字符匹配成功(即S[i] == P[j]),则i++,j++”,可得S[i]为S[5],P[j]为P[1],即接下来S[5]跟P[1]匹配(i=5,j=1)  

4. S[5]跟P[1]匹配成功,继续执行第①条指令:“如果当前字符匹配成功(即S[i] == P[j]),则i++,j++”,得到S[6]跟P[2]匹配(i=6,j=2),如此进行下去


5. 直到S[10]为空格字符,P[6]为字符D(i=10,j=6),因为不匹配,重新执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,相当于S[5]跟P[0]匹配(i=5,j=0)

6. 至此,我们可以看到,如果按照暴力匹配算法的思路,尽管之前文本串和模式串已经分别匹配到了S[9]、P[5],但因为S[10]跟P[6]不匹配,所以文本串回溯到S[5],模式串回溯到P[0],从而让S[5]跟P[0]匹配。

而S[5]肯定跟P[0]失配。为什么呢?因为在之前第4步匹配中,我们已经得知S[5] = P[1] = B,而P[0] = A,即P[1] != P[0],故S[5]必定不等于P[0],所以回溯过去必然会导致失配。那有没有一种算法,让i 不往回退,只需要移动j 即可呢?

答案是肯定的。这种算法就是本文的主旨KMP算法,它利用之前已经部分匹配这个有效信息,保持i 不回溯,通过修改j 的位置,让模式串尽量地移动到有效的位置。

举报

相关文章推荐

KMP算法(1)-暴力匹配算法

KMP算法基础

暴力匹配算法与KMP算法(串的匹配)

暴力匹配算法与kmp算法的比较,普通kmp算法,优化kmp算法。

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

暴力匹配和KMP算法模板

问题描述: 给出一个文本串S和一个模式串P,判断P是否在S中出现,若出现返回模式串中的位置。 暴力匹配算法思想 假设当前文本串遍历到i,模式串遍历到j: 则 1.若s[i]==p[j...

字符串匹配的算法(暴力算法和KMP算法)

学习字符串匹配算法有一段时间了,不过还是有点迷糊,虽然了解算法过程,但是在编码的时候还是会有些迷糊。 先把写的程序放在这里,以后有时间再来翻着看看吧! #include #include using ...

字符串匹配暴力算法 与 字符串匹配的KMP算法

声明:先看一下阮一峰的网络日志关于字符串的KMP算法的讲解。本文图片均引用于这篇日志。 在先前的笔试中遇到了关于字符串匹配的问题,一时脑袋卡壳没写好算法。现在就来分析分析 暴力算法和KMP算法各自原理...

字符串匹配算法--BF算法(暴力破解法)+KMP算法

问题描述: 有字符串S = “s1,s2,s3…”和T = “t1,t2,t3,…”,查找T在S中出现的位置 (这里只找第一次出现的位置,若查找所有出现的位置,方法同)。T称为模式串。 如:...

KMP匹配算法

以下是我自己写的关于KMP的一个模版题,这能有助于理解吧,这里用了next数组的升级版,不是原封的next数组;原封next数组我会贴在更下面:#include using namespace st...

KMP匹配算法

KMP字符串模式匹配详解 来自CSDN    KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂...

KMP匹配算法

/***字符串匹配算法***/ #include #include using namespace std; #define OK 1 #define ERROR 0 #define OVERFLO...

kmp匹配算法

在讲解kmp算法之前,先讨论下一般的模式匹配算法 先看下代码 int index(string s,string t,int pos) { for (int i=pos;i<s.length()...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)