KMP算法(1)-暴力匹配算法

转载 2016年08月29日 23:59:24

看的懵懵懂懂的,还是坚持copy一下
转载地址:http://blog.csdn.net/v_july_v/article/details/7041827

暴力匹配算法

假设现在我们面临这样一个问题:有一个文本串S,和一个模式串P,现在要查找P在S中的位置,怎么查找呢?

如果用暴力匹配的思路,并假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置,则有:

如果当前字符匹配成功(即S[i] == P[j]),则i++,j++,继续匹配下一个字符;
如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为0。
理清楚了暴力匹配算法的流程及内在的逻辑,咱们可以写出暴力匹配的代码,如下:
int ViolentMatch(char* s, char* p)  
{  
    int sLen = strlen(s);  
    int pLen = strlen(p);  

    int i = 0;  
    int j = 0;  
    while (i < sLen && j < pLen)  
    {  
        if (s[i] == p[j])  
        {  
            //①如果当前字符匹配成功(即S[i] == P[j]),则i++,j++      
            i++;  
            j++;  
        }  
        else  
        {  
            //②如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0      
            i = i - j + 1;  
            j = 0;  
        }  
    }  
    //匹配成功,返回模式串p在文本串s中的位置,否则返回-1  
    if (j == pLen)  
        return i - j;  
    else  
        return -1;  
}  

举个例子,如果给定文本串S“BBC ABCDAB ABCDABCDABDE”,和模式串P“ABCDABD”,现在要拿模式串P去跟文本串S匹配,整个过程如下所示:

1. S[0]为B,P[0]为A,不匹配,执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,S[1]跟P[0]匹配,相当于模式串要往右移动一位(i=1,j=0)


2. S[1]跟P[0]还是不匹配,继续执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,S[2]跟P[0]匹配(i=2,j=0),从而模式串不断的向右移动一位(不断的执行“令i = i - (j - 1),j = 0”,i从2变到4,j一直为0)

3. 直到S[4]跟P[0]匹配成功(i=4,j=0),此时按照上面的暴力匹配算法的思路,转而执行第①条指令:“如果当前字符匹配成功(即S[i] == P[j]),则i++,j++”,可得S[i]为S[5],P[j]为P[1],即接下来S[5]跟P[1]匹配(i=5,j=1)  

4. S[5]跟P[1]匹配成功,继续执行第①条指令:“如果当前字符匹配成功(即S[i] == P[j]),则i++,j++”,得到S[6]跟P[2]匹配(i=6,j=2),如此进行下去


5. 直到S[10]为空格字符,P[6]为字符D(i=10,j=6),因为不匹配,重新执行第②条指令:“如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0”,相当于S[5]跟P[0]匹配(i=5,j=0)

6. 至此,我们可以看到,如果按照暴力匹配算法的思路,尽管之前文本串和模式串已经分别匹配到了S[9]、P[5],但因为S[10]跟P[6]不匹配,所以文本串回溯到S[5],模式串回溯到P[0],从而让S[5]跟P[0]匹配。

而S[5]肯定跟P[0]失配。为什么呢?因为在之前第4步匹配中,我们已经得知S[5] = P[1] = B,而P[0] = A,即P[1] != P[0],故S[5]必定不等于P[0],所以回溯过去必然会导致失配。那有没有一种算法,让i 不往回退,只需要移动j 即可呢?

答案是肯定的。这种算法就是本文的主旨KMP算法,它利用之前已经部分匹配这个有效信息,保持i 不回溯,通过修改j 的位置,让模式串尽量地移动到有效的位置。

相关文章推荐

字符串匹配算法--BF算法(暴力破解法)+KMP算法

问题描述: 有字符串S = “s1,s2,s3…”和T = “t1,t2,t3,…”,查找T在S中出现的位置 (这里只找第一次出现的位置,若查找所有出现的位置,方法同)。T称为模式串。 如:...

字符串匹配算法 -- 暴力破解法(朴素法),RK算法,KMP算法

算法 预处理时间 匹配时间 朴素算法 0 O((n-m+1)m) Rabin-Karp Θ(m) O((n-m+1)m) KMP算法 Θ(m) Θ(n) 术语...
  • tutuxs
  • tutuxs
  • 2016年12月21日 00:38
  • 295

暴力匹配算法与KMP算法(串的匹配)

暴力匹配算法与kmp算法的比较,普通kmp算法,优化kmp算法。

串匹配算法(二)——手把手教你KMP算法(1)

KMP算法是一种比较高效的串匹配算法,高效体现在:源串下标不回溯,子串合理的移动。 KMP算法属于思路比较复杂的算法,我自己学习这个算法可以说是第三次了,前两次是似懂非懂的,但是最近在刷牛客题的时候...

KMP算法(模式匹配算法)

  • 2008年10月26日 21:36
  • 1KB
  • 下载

暴力匹配和KMP算法模板

问题描述: 给出一个文本串S和一个模式串P,判断P是否在S中出现,若出现返回模式串中的位置。 暴力匹配算法思想 假设当前文本串遍历到i,模式串遍历到j: 则 1.若s[i]==p[j...

数据结构(11)--串的模式匹配算法之BF、KMP算法

参考书籍:数据结构(C语言版)严蔚敏吴伟民编著清华大学出版社 1.串的存储 1.1定长顺序存储 串的定长顺序存储(静态数组):     #define  MAXSTRLEN  255  // 用户...

字符串模式匹配算法--详解KMP算法

在软考的复习中,看到过几次 字符串的模式匹配算法。看起来挺难的。所以花了点时间查了查关于字符串匹配的算法。下面详细介绍一下KMP模式匹配算法 以及next[j]函数如何计算。...

字符串匹配算法——KMP算法

作者:poll的笔记 来源:http://www.cnblogs.com/maybe2030/p/4633153.html 阅读目录 1 字符串匹配 ...

字符串匹配算法分析--BF和KMP算法

串的模式匹配,即子串(模式串)在主串中的定位操作,是各种串运算处理中的最重要的操作之一。在处理此类问题时,有两个比较常用的算法,分别是最简单的BF算法和改进后的KMP算法。1.BF算法——-算法原理 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:KMP算法(1)-暴力匹配算法
举报原因:
原因补充:

(最多只允许输入30个字)