sg(Sprague-Grundy)函数 小结

原创 2015年07月10日 20:21:02
sg(Sprague-Grundy)函数
sg值:一个点的SG值就是一个不等于它的后继点的SG的且大于等于零的最小整数。
后继点:也就是按照题目要求的走法,能够走一步达到的那个点。

sg函数值的性质:
sg(x)==0 必败点
sg(x)>0 必胜点

求单个sg函数值

int sg[MAXN];
int get_sg(int x, int n){
	if(sg[x]!=-1)
		return sg[x];
	bool vis[105]={0};
	for(int i=0;i<n;++i){
		int tmp = a[i]; //tmp是转移的下一个状态的步数
		if(x >= tmp){
			sg[x - tmp] = get_sg(x - tmp, n);
			vis[sg[x - tmp]] = 1;
		}
	}
	for(int i=0;;++i)
		if(!vis[i]) return sg[x]=i;
}
void init(){
	memset(sg,-1,sizeof(sg));
	sg[0]=0;
}

预处理sg值

void get_sg(){
	sg[0]=0;
	for(int i=1;i<N;++i){
		set<int> s;
		for(int j=0;j<10;++j){
			int tmp=(1<<j); //tmp是转移的下一个状态的步数
			if(i >= tmp)
				s.insert(sg[i - tmp]);
		}
		int g=0;
		while(s.count(g)!=0) ++g;
		sg[i]=g;
	}
}

例子:
hdu 1847
题意:
1. 总共n张牌;
2. 双方轮流抓牌;
3. 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4. 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明,并且每次都是Kiki先抓牌,请问谁能赢呢?
限制:
1 <= n <= 1000
思路:
sg函数

/*hdu 1847
  题意:
  1. 总共n张牌;
  2. 双方轮流抓牌;
  3. 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
  4. 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
  假设Kiki和Cici都是足够聪明,并且每次都是Kiki先抓牌,请问谁能赢呢?
  限制:
  1 <= n <= 1000
  思路:
  sg函数
 */
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
const int N=1005;
const int M=105;
int sg[N];

/*int get_sg(int x){
	if(sg[x]!=-1)
		return sg[x];
	bool vis[M];
	memset(vis,0,sizeof(vis));

	for(int i=0;i<10;++i){
		int tmp = (1<<i);
		if(x >= tmp){
			sg[x - tmp] = get_sg(x - tmp);
			vis[sg[x - tmp]] = 1;
		}
	}
	for(int i=0;;++i)
		if(!vis[i]) return i;
}
void get_sg(){
	sg[0]=0;
	for(int i=1;i<=1000;++i){
		sg[i]=get_sg(i);
	}
}*/

void get_sg(){
	sg[0]=0;
	for(int i=1;i<N;++i){
		set<int> s;
		for(int j=0;j<10;++j){
			int tmp=(1<<j);
			if(i >= tmp)
				s.insert(sg[i - tmp]);
		}
		int g=0;
		while(s.count(g)!=0) ++g;
		sg[i]=g;
	}
}

void init(){
	memset(sg,-1,sizeof(sg));
}

int main(){
	init();
	
	get_sg();

	int n;
	while(scanf("%d",&n)!=EOF){
		if(sg[n]==0)
			puts("Cici");
		else
			puts("Kiki");
	}
	return 0;
}


版权声明:by whai

相关文章推荐

博弈论(二):Sprague-Grundy函数

上一期的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆...

Sprague-Grundy函数-------------博弈

原载网址:http://www.cnblogs.com/Knuth/archive/2009/09/05/1561007.html 上一期的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方...

Sprague-Grundy函数

上一期的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆...

Graph Games 以及 The Sprague-Grundy Function(S-G函数)

1 Games Played on Directed Graphs. Definition.      Adirected graph,G,is a pair (X, F) where X is a...

公平游戏的Sprague-Grundy定理

原文地址:Theory">Sprague-Grundy Theory作者:unmoral The Sprague-Grundy theory of impartial games 公平游戏的S...

SRM 624 D2L3: GameOfSegments, 博弈论,Sprague–Grundy theorem,Nimber

题目:http://community.topcoder.com/stat?c=problem_statement&pm=13204&rd=15857 这道题目需要用到博弈论中的经典理论,S...

S-Nim(fromHDU)(博弈问题)(Sprague-Grundy定理)

题目描述: Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is pl...

Codeforces Round #188 (Div. 1) Game with Powers 引发的联想 NIM游戏 Sprague Grundy Theory

考完试,有空总结一下一个很大的收获:Sprague Grundy Theory 这是由Codeforces Round #188 (Div. 1) Game with Powers这道题引发的思考,一...

Sprague-Garundy函数

上一期的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆...
  • HZXPH
  • HZXPH
  • 2011-08-06 17:12
  • 863

Nim游戏,Grundy函数介绍

Nim游戏,Grundy函数介绍部分翻译自:http://www.cut-the-knot.org/ctk/May2001.shtmlNim是一种很古老又很迷人的双人参与的数学游戏。这个游戏的名字和相...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)