【第22期】观点:IT 行业加班,到底有没有价值?

Hadoop源代码分析(一)总括

转载 2013年12月05日 09:31:17

Google的核心竞争技术是它的计算平台。Google的大牛们用了下面5篇文章,介绍了它们的计算设施。 
GoogleCluster
 http://research.google.com/archive/googlecluster.html 
Chubby
http://labs.google.com/papers/chubby.html 
GFS
http://labs.google.com/papers/gfs.html 
BigTable
http://labs.google.com/papers/bigtable.html 
MapReduce
http://labs.google.com/papers/mapreduce.html 
很快,Apache上就出现了一个类似的解决方案,目前它们都属于ApacheHadoop项目,对应的分别是: 
Chubby-->ZooKeeper 
GFS-->HDFS 
BigTable-->HBase 
MapReduce-->Hadoop 
目前,基于类似思想的Open Source项目还很多,如Facebook用于用户分析的Hive 
HDFS
作为一个分布式文件系统,是所有这些项目的基础。分析好HDFS,有利于了解其他系统。由于HadoopHDFSMapReduce是同一个项目,我们就把他们放在一块,进行分析。

下图是MapReduce整个项目的顶层包图和他们的依赖关系。Hadoop包之间的依赖关系比较复杂,原因是HDFS提供了一个分布式文件系统,该系统提供API,可以屏蔽本地文件系统和分布式文件系统,甚至象Amazon S3这样的在线存储系统。这就造成了分布式文件系统的实现,或者是分布式文件系统的底层的实现,依赖于某些貌似高层的功能。功能的相互引用,造成了蜘蛛网型的依赖关系。一个典型的例子就是包confconf用于读取系统配置,它依赖于fs,主要是读取配置文件的时候,需要使用文件系统,而部分的文件系统的功能,在包fs中被抽象了。

Hadoop的关键部分集中于图中蓝色部分,这也是我们考察的重点。

Hadoop源代码分析(一) - manny - 你的目标-卓越非凡
 
举报

相关文章推荐

Hadoop源代码分析(一)——输入(TextInputFormat,FileSplit,LineRecordReader)

Hadoop在运行一个MapReduce作业的时候,我们需要为作业指定它的输入格式。 在默认情况下: - 输入格式:TextInputFormat - 输入分片:FileSpli...

Hadoop源代码分析(三)RPC

Hadoop源代码分析(三)RPC 原文:http://caibinbupt.iteye.com/blog/280790 介绍完org.apache.hadoop.io...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

Hadoop源代码分析

一个典型的HDFS系统包括一个NameNode和多个DataNode。NameNode维护名字空间;而DataNode存储数据块。 DataNode负责存储数据,一个数据块在多个DataNode中有备份;而一个DataNode对于一个块最多只包含一个备份。所以我们可以简单地认为DataNode上存...

Hadoop源代码分析(MapTask辅助类,II)

有了上面Mapper输出的内存存储结构和硬盘存储结构讨论,我们来仔细分析MapOutputBuffer的流程。 首先是成员变量。最先初始化的是作业配置job和统计功能reporter。通过配置,MapOutputBuffer可以获取本地文件系统(localFs和rfs),
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)