MapReduce中的自定义多目录/文件名输出HDFS

转载 2013年12月05日 11:10:37

最近考虑到这样一个需求:

需要把原始的日志文件用hadoop做清洗后,按业务线输出到不同的目录下去,以供不同的部门业务线使用。

这个需求需要用到MultipleOutputFormat和MultipleOutputs来实现自定义多目录、文件的输出。

需要注意的是,在hadoop 0.21.x之前和之后的使用方式是不一样的:

hadoop 0.21 之前的API 中有 org.apache.hadoop.mapred.lib.MultipleOutputFormat 和 org.apache.hadoop.mapred.lib.MultipleOutputs,而到了 0.21 之后 的API为 org.apache.hadoop.mapreduce.lib.output.MultipleOutputs ,

新版的API 整合了上面旧API两个的功能,没有了MultipleOutputFormat。

本文将给出新旧两个版本的API code。

1、旧版0.21.x之前的版本:

01 import java.io.IOException;
02  
03 import org.apache.hadoop.conf.Configuration;
04 import org.apache.hadoop.conf.Configured;
05 import org.apache.hadoop.fs.Path;
06 import org.apache.hadoop.io.LongWritable;
07 import org.apache.hadoop.io.NullWritable;
08 import org.apache.hadoop.io.Text;
09 import org.apache.hadoop.mapred.FileInputFormat;
10 import org.apache.hadoop.mapred.FileOutputFormat;
11 import org.apache.hadoop.mapred.JobClient;
12 import org.apache.hadoop.mapred.JobConf;
13 import org.apache.hadoop.mapred.MapReduceBase;
14 import org.apache.hadoop.mapred.Mapper;
15 import org.apache.hadoop.mapred.OutputCollector;
16 import org.apache.hadoop.mapred.Reporter;
17 import org.apache.hadoop.mapred.TextInputFormat;
18 import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
19 import org.apache.hadoop.util.Tool;
20 import org.apache.hadoop.util.ToolRunner;
21  
22 public class MultiFile extends Configured implements Tool {
23  
24     public static class MapClass extends MapReduceBase implements
25             Mapper<LongWritable, Text, NullWritable, Text> {
26  
27         @Override
28         public void map(LongWritable key, Text value,
29                 OutputCollector<NullWritable, Text> output, Reporter reporter)
30                 throws IOException {
31             output.collect(NullWritable.get(), value);
32         }
33  
34     }
35  
36     // MultipleTextOutputFormat 继承自MultipleOutputFormat,实现输出文件的分类
37  
38     public static class PartitionByCountryMTOF extends
39             MultipleTextOutputFormat<NullWritable, Text> { // key is
40                                                             // NullWritable,
41                                                             // value is Text
42         protected String generateFileNameForKeyValue(NullWritable key,
43                 Text value, String filename) {
44             String[] arr = value.toString().split(",", -1);
45             String country = arr[4].substring(13); // 获取country的名称
46             return country + "/" + filename;
47         }
48     }
49  
50     // 此处不使用reducer
51     /*
52      * public static class Reducer extends MapReduceBase implements
53      * org.apache.hadoop.mapred.Reducer<LongWritable, Text, NullWritable, Text>
54      * {
55      *
56      * @Override public void reduce(LongWritable key, Iterator<Text> values,
57      * OutputCollector<NullWritable, Text> output, Reporter reporter) throws
58      * IOException { // TODO Auto-generated method stub
59      *
60      * }
61      *
62      * }
63      */
64     @Override
65     public int run(String[] args) throws Exception {
66         Configuration conf = getConf();
67         JobConf job = new JobConf(conf, MultiFile.class);
68  
69         Path in = new Path(args[0]);
70         Path out = new Path(args[1]);
71  
72         FileInputFormat.setInputPaths(job, in);
73         FileOutputFormat.setOutputPath(job, out);
74  
75         job.setJobName("MultiFile");
76         job.setMapperClass(MapClass.class);
77         job.setInputFormat(TextInputFormat.class);
78         job.setOutputFormat(PartitionByCountryMTOF.class);
79         job.setOutputKeyClass(NullWritable.class);
80         job.setOutputValueClass(Text.class);
81  
82         job.setNumReduceTasks(0);
83         JobClient.runJob(job);
84         return 0;
85     }
86  
87     public static void main(String[] args) throws Exception {
88         int res = ToolRunner.run(new Configuration(), new MultiFile(), args);
89         System.exit(res);
90     }
91  
92 }
测试数据及结果:
1 hadoop fs -cat /tmp/multiTest.txt
2 5765303,1998,14046,1996,"AD","",,1,12,42,5,59,11,1,0.4545,0,0,1,67.3636,,,,
3 5785566,1998,14088,1996,"AD","",,1,9,441,6,69,3,0,1,,0.6667,,4.3333,,,,
4 5894770,1999,14354,1997,"AD","",,1,,82,5,51,4,0,1,,0.625,,7.5,,,,
5 5765303,1998,14046,1996,"CN","",,1,12,42,5,59,11,1,0.4545,0,0,1,67.3636,,,,
6 5785566,1998,14088,1996,"CN","",,1,9,441,6,69,3,0,1,,0.6667,,4.3333,,,,
7 5894770,1999,14354,1997,"CN","",,1,,82,5,51,4,0,1,,0.625,,7.5,,,,

from:

MultipleOutputFormat Example

http://mazd1002.blog.163.com/blog/static/665749652011102553947492/


2、新版0.21.x及之后的版本:

01 public class TestwithMultipleOutputs extends Configured implements Tool {
02  
03   public static class MapClass extends Mapper<LongWritable,Text,Text,IntWritable> {
04  
05     private MultipleOutputs<Text,IntWritable> mos;
06  
07     protected void setup(Context context) throws IOException,InterruptedException {
08       mos = new MultipleOutputs<Text,IntWritable>(context);
09     }
10  
11     public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
12       String line = value.toString();
13       String[] tokens = line.split("-");
14  
15       mos.write("MOSInt",new Text(tokens[0]), new IntWritable(Integer.parseInt(tokens[1])));  //(第一处)
16       mos.write("MOSText"new Text(tokens[0]),tokens[2]);     //(第二处)
17       mos.write("MOSText"new Text(tokens[0]),line,tokens[0]+"/");  //(第三处)同时也可写到指定的文件或文件夹中
18     }
19  
20     protected void cleanup(Context context) throws IOException,InterruptedException {
21       mos.close();
22     }
23  
24   }
25   public int run(String[] args) throws Exception {
26  
27     Configuration conf = getConf();
28  
29     Job job = new Job(conf,"word count with MultipleOutputs");
30  
31     job.setJarByClass(TestwithMultipleOutputs.class);
32  
33     Path in = new Path(args[0]);
34     Path out = new Path(args[1]);
35  
36     FileInputFormat.setInputPaths(job, in);
37     FileOutputFormat.setOutputPath(job, out);
38  
39     job.setMapperClass(MapClass.class);
40     job.setNumReduceTasks(0);  
41  
42     MultipleOutputs.addNamedOutput(job,"MOSInt",TextOutputFormat.class,Text.class,IntWritable.class);
43     MultipleOutputs.addNamedOutput(job,"MOSText",TextOutputFormat.class,Text.class,Text.class);
44  
45     System.exit(job.waitForCompletion(true)?0:1);
46     return 0;
47   }
48  
49   public static void main(String[] args) throws Exception {
50  
51     int res = ToolRunner.run(new Configuration(), new TestwithMultipleOutputs(), args);
52     System.exit(res);
53   }
54  
55 }

测试的数据:

abc-1232-hdf
abc-123-rtd
ioj-234-grjth
ntg-653-sdgfvd
kju-876-btyun
bhm-530-bhyt
hfter-45642-bhgf
bgrfg-8956-fmgh
jnhdf-8734-adfbgf
ntg-68763-nfhsdf
ntg-98634-dehuy
hfter-84567-drhuk

结果截图:(结果输出到/test/testMOSout)

PS:遇到的一个问题:

  如果没有mos.close(), 程序运行中会出现异常:

  12/05/21 20:12:47 WARN hdfs.DFSClient: DataStreamer Exception:

  org.apache.hadoop.ipc.RemoteException:org.apache.hadoop.hdfs.server.namenode.LeaseExpiredException: No lease on
  /test/mosreduce/_temporary/_attempt_local_0001_r_000000_0/h-r-00000 File does not exist. [Lease. Holder: DFSClient_-352105532, pendingcreates: 5]

from:

MultipleOutputFormat和MultipleOutputs

http://www.cnblogs.com/liangzh/archive/2012/05/22/2512264.html    

Hadoop利用Partitioner对输出文件分类(改写partition,路由到指定的文件中)

http://superlxw1234.iteye.com/blog/1495465

http://ghost-face.iteye.com/blog/1869926

更多参考&推荐阅读:

1、【Hadoop】利用MultipleOutputs,MultiOutputFormat实现以不同格式输出到多个文件

http://www.cnblogs.com/iDonal/archive/2012/08/07/2626588.html

2、cdh3u3 hadoop 0.20.2 MultipleOutputs 多输出文件初探

http://my.oschina.net/wangjiankui/blog/49521

3、使用MultipleOutputs

http://blog.163.com/ecy_fu/blog/static/444512620101274344951/

4、Hadoop reduce多个输出

http://blog.csdn.net/inte_sleeper/article/details/7042020

5、Hadoop 0.20.2中怎么使用MultipleOutputFormat实现多文件输出和完全自定义文件名

http://www.cnblogs.com/flying5/archive/2011/05/04/2078407.html

6、Hadoop OutputFormat浅析

http://zhb-mccoy.iteye.com/blog/1591635

7、others:

https://sites.google.com/site/hadoopandhive/home/how-to-write-output-to-multiple-named-files-in-hadoop-using-multipletextoutputformat
https://issues.apache.org/jira/browse/HADOOP-3149
http://grokbase.com/t/hadoop/common-user/112ewx7s15/could-i-write-outputs-in-multiple-directories

8、MultipleOutputs 官方范例

http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/lib/output/MultipleOutputs.html

9、多数据源输入:MultipleInputs

http://stackoverflow.com/questions/17456369/mapreduce-job-with-mixed-data-sources-hbase-table-and-hdfs-files

https://groups.google.com/forum/#!topic/nosql-databases/SH61smOV-mo

http://bigdataprocessing.wordpress.com/2012/07/27/hadoop-hbase-mapreduce-examples/

http://hbase.apache.org/book/mapreduce.example.html

相关文章推荐

实现MapReduce多文件自定义输出

http://pan.baidu.com/s/1kT0usSZ

实现mapreduce多文件自定义输出

普通maprduce中通常是有map和reduce两个阶段,在不做设置的情况下,计算结果会以part-000*输出成多个文件,并且输出的文件数量和reduce数量一样,文件内容格式也不能随心所欲。这样...

如何自定义mapreduce在输出的key和value之间自动添加的分隔符

背景:我在用mahout做一个推荐

MapReduce对输入多文件的处理2自定义FileInputFormat类

多种自定义文件格式的文件输入处理 MultipleInputs可以让MR支持多种输入格式 比如我们有两种文件格式,那么我们就要有两套Record Class,RecordReader和InputF...

MapReduce编程练习(三),按要求不同文件名输出结果

hadoop MapReduce编程练习 按要求不同文件名输出结果
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)