大数相乘

原创 2012年03月26日 11:39:23

改变 op1 和 op2 可以实现任意位数的计算,代码如下:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void calc(char *op1,char *op2)
{
	int i;
	int j;
	int k = 0;
	int re;
	int carry = 0;
	int op1_len = strlen(op1);         //5
	int op2_len = strlen(op2);			//5	
	char *result = (char *)malloc(op1_len + op2_len + 1);
	for(i = 0;i <= op1_len + op2_len;i++)
		result[i] = 0;
	for(i = op1_len - 1;i >= 0;i--)
	{
		for(carry = 0,j = op2_len - 1;j >= 0;j--)
		{
			re = (op1[i] - '0') * (op2[j] - '0') + result[i + j + 1] + carry;
			result[i + j + 1] = (char)(re % 10);
			carry = (char)(re / 10);
		}
//		for(i = 0;i < op1_len + op2_len;i++)
//			printf("%d",result[i]);
//		printf("\n");
		result[i] = (char)carry;
	}
	for(i = 0;result[i] == 0 && i < op1_len + op2_len;i++)
		;
	for(;i < op1_len + op2_len;i++)
		printf("%d",result[i]);
}

int main()
{
	char *op1 = "1234567891011121314151617181920";
	char *op2 = "2019181716151413121110987654321";
	//char *op1 = "10000";
	//char *op2 = "10000";
	char *op3 = "12345";
	//  152399025
	//char *op1 = "99999";
	//char *op2 = "99999";
	// 9999800001
	char *op4 = "54321";
	// 2950771041
	calc(op1,op2);
	return 0;
}


分治法实现大数相乘 原理分析

对于十进制的数据也是相同的 出处:点击打开链接
  • zhulincao
  • zhulincao
  • 2014年03月14日 10:58
  • 329

汇编Q1:大数相乘

Q1、大数相乘。要求实现两个十进制大整数的相乘,输出乘法运算的结果。.386 .model flat, stdcall option casemap : noneincludelib msvcrt.l...
  • Crystal_ting
  • Crystal_ting
  • 2017年11月16日 23:17
  • 760

算法理解之大数相乘问题

前面关于思路介绍引用前辈:http://blog.csdn.net/jinyongqing/article/details/13508577的叙述,因为个人思考觉得前辈的概述精简,也特别符合自己所思考...
  • qq_21794823
  • qq_21794823
  • 2017年04月12日 14:25
  • 359

算法理解——大数相乘问题

腾讯今年校招的一道附加题,就是“大数相乘”问题。所谓大数相乘,就是指数字比较大,相乘的结果超出了基本类型的表示范围,所以这样的数不能够直接做乘法运算。 其实乘法运算可以分拆为两步:第一步,是将乘数与被...
  • jinyongqing
  • jinyongqing
  • 2013年10月29日 15:21
  • 5714

大数相加 大数相乘 模板

#include #include #include #include  using namespace std;  void multiply(const char *a,const cha...
  • u012848631
  • u012848631
  • 2014年05月18日 20:27
  • 868

大数相乘的算法

大数相乘基本算法(转) 阶乘之计算从入门到精通-大数的表示 http://blog.csdn.net/liangbch/article/details/1562014 ...
  • haisheng95
  • haisheng95
  • 2012年06月10日 11:17
  • 2965

傅里叶变换与大数乘法

我们知道,两个 N 位数字的整数的乘法,如果使用常规的算法,时间复杂度是 O(N2)。然而,使用快速傅里叶变换,时间复杂度可以降低到 O(N logN loglogN)。   假设我们要计...
  • justdoithai
  • justdoithai
  • 2016年04月28日 22:05
  • 5787

大数相乘以及其高效算法

测试用例: 999 999 998001 999999999999      999999999999 999999999998000000000001 下面分析下999*999    6...
  • HONDELY
  • HONDELY
  • 2011年11月05日 14:44
  • 12600

大数运算(4)——大数乘法

首先说一下乘法计算的算法,从低位向高位乘,在竖式计算中,我们是将乘数第一位与被乘数的每一位相乘,记录结果,之后,用第二位相乘,记录结果并且左移一位,以此类推,直到计算完最后一位,再将各项结果相加。得出...
  • lisp1995
  • lisp1995
  • 2016年08月25日 19:01
  • 2274

新浪笔试:大数相乘.

这是一道新浪的笔试题,计算两个很大的数相乘并输出结果.思路是采取分解两个大数,将它们写成(a1*10^n1 + a2*10^n2…..)*(b1*10^n1 + b2*10^n2…..)的形式,然后计...
  • pp634077956
  • pp634077956
  • 2015年10月19日 13:50
  • 202
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:大数相乘
举报原因:
原因补充:

(最多只允许输入30个字)