Hash学习(3)-冲突的解决

转载 2012年03月27日 17:48:29

     为提高hash表查找性能,除了考虑选择合适的hash表表长和完美的hash函数外,还必须考虑hash表处理冲突的能力。当hash函数对两个不同的数据项产生了相同的hash值时,冲突就产生了。对于冲突的处理,通常采用的方法可以分为三类:

(1)线性再散列法,简单的按顺序遍历hash表,寻找下一个可用的槽;

(2)非线性再散列法,计算一个新的hash值;

(3)外部拉链法,将hash表中的每个槽当作具有相同hash值的数据项所组成链表的头部,hash表将发生冲突的项添加到同一个链表中。

下面对这三种方法分别介绍。

1.线性再散列法

       线性再散列法是形式最简单的处理冲突的方法。插入元素时,如果发生冲突,算法会简单的遍历hash表,直到找到表中的下一个空槽,并将该元素放入该槽中。查找元素时,首先散列值所指向的槽,如果没有找到匹配,则继续遍历hash表,直到:(1)找到相应的元素;(2)找到一个空槽(指示查找的元素不存在);(3)整个hash表遍历完毕(指示该元素不存在并且hash表是满的)。下表显示了以线性再散列法将{89,18,49,58,69}5个元素插入hash表的过程。(hash函数为:hash(X)=X mod 10;hash表长一般用素数,这里为了说明方便取表长为10)


         第一次冲突发生在插入关键字49时,它被放在下一个空闲地址,即地址0。关键字58依次和18,89,49发生冲突,试选三次之后才找到一个空单元。对69的冲突用类似的方法处理。从以上过程可以看出,只要表中有空闲单元,总可以找到,但这里选择步长为1,将会在hash表中产生聚集,即:即使hash表相对较空,还是会在某些区域形成一些区块,这些区块中的任何活动都将设计更大的步长。但如果以5或更大的值作为步长,可以迅速地从拥挤区域移开,从而减少聚集现象的发生。事实上,只要hash表长和检查槽的步长是互质的,那么表中的每个槽都会被检查到。

       线性再散列法有两个缺点:第一,不能从表中删除元素,因为相应的单元可能已经引起过冲突,元素绕过它存到了别处,例如,如果我们删除了18,那么其他的元素都会找不到。如果确实需要删除,可以采用懒惰删除的方法。第二,当表被填满时性能下降明显。

① 处理溢出需另编程序。一般可另外设立一个溢出表,专门用来存放上述哈希表中放不下的记录。此溢出表最简单的结构是顺序表,查找方法可用顺序查找。
② 按上述算法建立起来的哈希表,删除工作非常困难。假如要从哈希表 HT 中删除一个记录,按理应将这个记录所在位置置为空,但我们不能这样做,而只能标上已被删除的标记,否则,将会影响以后的查找。
③ 线性探测法很容易产生堆聚现象。所谓堆聚现象,就是存入哈希表的记录在表中连成一片。按照线性探测法处理冲突,如果生成哈希地址的连续序列愈长 ( 即不同关键字值的哈希地址相邻在一起愈长 ) ,则当新的记录加入该表时,与这个序列发生冲突的可能性愈大。因此,哈希地址的较长连续序列比较短连续序列生长得快,这就意味着,一旦出现堆聚 ( 伴随着冲突 ) ,就将引起进一步的堆聚。

2.非线性再散列法

        线性再散列法是从冲突位置开始,采用一个步长以顺序方式遍历hash表,来查找一个可用的槽,从上面的讨论可以看出,它容易产生聚集现象。非线性再散列法可以避免遍历散列表,它会计算一个新的hash值,并通过它跳转到表中一个完全不同的部分。它的思想就是:通过跳转到表中不同的部分,从而避免相似值的聚集,如果再散列函数跳转到的槽已经被占用了,则继续执行新一轮的再散列和跳转。

    例如,还是上面的例子,如果再散列函数是hash(X)=R-(X mod R),其中R为小于hash表长的素数,如果我们选择R=7,则下表显示了插入与前面相同的关键字的结果。


        第一个冲突发生在49被插入的时候, hash(49)=7-0=7,故49被插入到位置6。Hash(58)=7-2=5,于是58被插入到位置3。最后69产生冲突,从而被插入到距离为hash(69)=7-6=1的地方。

        非线性再散列法也有不能从表中删除元素的缺点。

        无论是使用线性再散列法还是非线性再散列法,只有在散列表不会接近填满的情况下,才能使用再散列。当散列表的负载因子增大时,再散列所花费的时间也会显著增加。通过以上讨论可以看出,再散列方法适用于表负载较低并且不太可能执行删除操作的情况。

3.外部拉链法

        外部拉链法是将hash表看作是一个链表数组,表中的每个槽要不为空,要不指向hash到该槽的表项的链表。可以通过把元素添加到链表中来解决冲突。同样,可以通过从链表中删除元素来执行删除操作。因此,解决冲突的代价不会超过向链表中添加一个节点,不需要执行再散列。在再散列中,表项的最大数量是由表中槽的原始数量确定的,与之不同的是,外部拉链法可以容纳的元素于将在内存中存放的元素一样多。

        外部拉链法的原则是:hash表的大小一般与预料的元素个数差不多。

        假设有一个表长为10的hash表,给出10个关键字为前10个自然数的平方,hash函数为hash(X)=X mod 10,下图就是对应的外部拉链法的hash表。


          外部拉链法的平均查找时间是对链表的查找时间加上1,这个1是最初的定位hash表槽。外部拉链法的缺点是:它需要稍微多一些的空间来实现,因为添加任何元素都需要添加指向节点的指针,并且每次探查也要花费稍微多一点的时间,因为它需要间接引用指针,而不是直接访问元素。由于今天的内存成本很低并且可以使用非常快的CPU,所以这些缺点都是微不足道的。因此,实际使用hash表时,一般都是使用拉链法来解决hash冲突。

与开放定址法相比,拉链法有如下几个优点:
①拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
②由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
③开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
④在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。而对开放地址法构造的散列表,删除结点不能简单地将被删结 点的空间置为空,否则将截断在它之后填人散列表的同义词结点的查找路径。这是因为各种开放地址法中,空地址单元(即开放地址)都是查找失败的条件。因此在 用开放地址法处理冲突的散列表上执行删除操作,只能在被删结点上做删除标记,而不能真正删除结点。

(3)拉链法的缺点
     拉链法的缺点是:指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。


转自 http://blog.csdn.net/qll125596718/article/details/7028322

相关文章推荐

招行信用卡笔试编程题 — 考察树的节点个数C++

秋招,错过了很多笔试,正好做到了招行信用卡的笔试题,编程题以前好像遇到过类似的题目,当时没有解决,这次整理mark一下,还是比较典型的一类题目。题目描述:信用卡开展营销活动,持有我行信用卡客户推荐信用...

Spark2.0机器学习系列之11: 聚类(幂迭代聚类, power iteration clustering, PIC)

幂迭代聚类, power iteration clustering, PIC 原理简介 Spark 代码 参数设置

Hash学习(3)-冲突的解决

为提高hash表查找性能,除了考虑选择合适的hash表表长和完美的hash函数外,还必须考虑hash表处理冲突的能力。当hash函数对两个不同的数据项产生了相同的hash值时,冲突就产生了。对于冲突的...

算法学习 - Hash Table操作,分离链接法解决哈希冲突

分离链接法 hash table是映射机制的,最大的优点就是它的操作是O(1)级别的。但是会出现哈希冲突,这就需要几种办法来解决。这里先说一种:分离链接法。 就是当插入的位置已经存在一个值之后,那...

C++实现的hash冲突解决算法

  • 2010年11月12日 06:42
  • 41KB
  • 下载

解决Hash冲突的几种方法

开放地址法: 1.线性探测法        线性再散列法是形式最简单的处理冲突的方法。插入元素时,如果发生冲突,算法会简单的从该槽位置向后循环遍历hash表,直到找到表中的下一个空槽,并将该元...

HashMap的实现原理及hash冲突解决方法

1.    HashMap概述:    HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序...

HashMap解决hash冲突的方法

在Java编程语言中,最基本的结构就是两种,一种是数组,一种是模拟指针(引用),所有的数据结构都可以用这两个基本结构构造,HashMap也一样。当程序试图将多个 key-value 放入 HashMa...

【数据结构】hash冲突的解决方法

hash表的定义 散列技术是在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使得每个关键字key 对应一个存储位置f (key),对应关系f 称为散列函数, 又称为哈希( Hash) 函数 ...

HashMap的put、get方法分析与Hash冲突的分析、解决

HashMap的put、get方法分析与Hash冲突的分析、解决
  • dch9210
  • dch9210
  • 2016年09月26日 23:40
  • 1434
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hash学习(3)-冲突的解决
举报原因:
原因补充:

(最多只允许输入30个字)