因为之后要弄深度学习方面的东西,所以这几天把theano的开发环境搭建了下,原本以为很简单,但实际安装的时候,由于自己电脑之前装过一些东西产生了干扰,几乎把网上所有的教程参考了一遍,足足折腾了三天才真正完整地安装好,实现了GPU加速。
安装环境
- 64位win7系统,显卡:GT 720;
- Visual Studio 2013 ;
- 因为用的师兄传下来的电脑,已经安装了CUDA,所以此处不会讲到CUDA的安装,具体安装可以参考其他博客。
因为Anaconda中集成了很多python的库,一些常用的库基本都在里面,所以通过安装Anaconda来搭建theano的环境是最方便的,而且网上关于这个的资料也是最多的。
我选择的Anaconda版本是Windows64位python2.7,Anaconda2-4.1.1-Windows-x86_64.exe。下载之后直接安装即可,建议下载之前最好把以前装过的python卸载了,不然后面装其他东西的时候会产生干扰!路径可以自己选择,我的路径是D:\Anaconda2。Anaconda安装完成后会自动添加环境变量。(如果你在安装过程中除了改路径其他都是默认安装的话)
下载地址:https://www.continuum.io/downloads
2.安装mingw
这里有巨坑!
- 安装完Anaconda之后,打开cmd,直接输入Anaconda的安装命令
conda install mingw libpython
- 安装成功之后,Anaconda文件夹下就会出现MinGW文件夹。然后需要手动添加环境变量,在path下添加“D:\Anaconda2\MinGW\bin;D:\Anaconda2\MinGW\x86_64-w64-mingw32\lib;”这两个路径。
这一步一般不会出错,但是很坑的一个就是,如果你之前装过mingw,而且还配置了环境变量的话,会和这Anaconda下安装的MinGW产生冲突,导致在安装theano的时候看似安装成功了,一import theano就出现各种奇怪的字符,或者说不能import theano中的gof,然而明明在theano下又能找到gof文件,陷入这种崩溃的局面,我当初就是被这个问题坑的不行。
- 通过cmd直接输入
pip install theano
这是最简单的方法,看到有教程说是可以自己单独下载再解压,那种麻烦不说,而且据说会产生各种问题。
安装成功之后,需要添加theano的环境变量,新建一个“PYTHONPATH”的变量,路径设置为“