windows下theano开发环境搭建(实现了GPU加速)

本文详细介绍了在Windows系统下,如何利用Anaconda搭建Theano的开发环境,包括安装Anaconda、解决MinGW冲突、安装Theano、配置环境变量,以及创建.theanorc.txt文件实现GPU加速。在配置过程中遇到的问题和解决方案也被详细阐述,以帮助读者成功建立Theano的GPU环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       因为之后要弄深度学习方面的东西,所以这几天把theano的开发环境搭建了下,原本以为很简单,但实际安装的时候,由于自己电脑之前装过一些东西产生了干扰,几乎把网上所有的教程参考了一遍,足足折腾了三天才真正完整地安装好,实现了GPU加速。


安装环境

  • 64位win7系统,显卡:GT 720;
  • Visual Studio 2013 ;
  • 因为用的师兄传下来的电脑,已经安装了CUDA,所以此处不会讲到CUDA的安装,具体安装可以参考其他博客。
1.安装Anaconda

因为Anaconda中集成了很多python的库,一些常用的库基本都在里面,所以通过安装Anaconda来搭建theano的环境是最方便的,而且网上关于这个的资料也是最多的。

我选择的Anaconda版本是Windows64位python2.7,Anaconda2-4.1.1-Windows-x86_64.exe。下载之后直接安装即可,建议下载之前最好把以前装过的python卸载了,不然后面装其他东西的时候会产生干扰!路径可以自己选择,我的路径是D:\Anaconda2。Anaconda安装完成后会自动添加环境变量。(如果你在安装过程中除了改路径其他都是默认安装的话)

下载地址:https://www.continuum.io/downloads


2.安装mingw

这里有巨坑!

  • 安装完Anaconda之后,打开cmd,直接输入Anaconda的安装命令
             conda install mingw libpython
  • 安装成功之后,Anaconda文件夹下就会出现MinGW文件夹。然后需要手动添加环境变量,在path下添加“D:\Anaconda2\MinGW\bin;D:\Anaconda2\MinGW\x86_64-w64-mingw32\lib;”这两个路径。
这一步一般不会出错,但是很坑的一个就是,如果你之前装过mingw,而且还配置了环境变量的话,会和这Anaconda下安装的MinGW产生冲突,导致在安装theano的时候看似安装成功了,一import theano就出现各种奇怪的字符,或者说不能import theano中的gof,然而明明在theano下又能找到gof文件,陷入这种崩溃的局面,我当初就是被这个问题坑的不行。

3.安装theano
  • 通过cmd直接输入
pip install theano

        这是最简单的方法,看到有教程说是可以自己单独下载再解压,那种麻烦不说,而且据说会产生各种问题。

        安装成功之后,需要添加theano的环境变量,新建一个“PYTHONPATH”的变量,路径设置为“

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值