# 差分约束系统的学习 poj1364（bellman和spfa）

1701人阅读 评论(2)

【概念】：对于一个序列。

【学习】：

B - A <= c      (1)
C - B <= a      (2)
C - A <= b      (3)
我们想要知道C - A的最大值，通过(1) + (2)，可以得到 C - A <= a + c，所以这个问题其实就是求min{b, a+c}。将上面的三个不等式按照 三-1 数形结合 中提到的方式建图，如图三-2-1所示。

我们发现min{b, a+c}正好对应了A到C的最短路，而这三个不等式就是著名的三角不等式。将三个不等式推广到m个，变量推广到n个，就变成了n个点m条边的最短路问题了。

【例题】poj1364

 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13843 Accepted: 4920

Description

Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son.
Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.

Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.

After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.

Input

The input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.

Output

The output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last null'' block of the input.

Sample Input

4 2
1 2 gt 0
2 2 lt 2
1 2
1 0 gt 0
1 0 lt 0
0

Sample Output

lamentable kingdom
successful conspiracy

【题意】：

【解析】：

bellman写法中可以省略超级源点，直接将dis数组清为0即可。

【代码】bellman和spfa（后者效率高）

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
struct node{
int u,to,len,next;
}e[10101];
int n,m,cnt;
int dis[102];
int in[102];//记录入度
{
}
int bellman()
{
memset(dis,0,sizeof(dis));
//收缩操作
for(int i=0;i<=n;i++)
for(int j=0;j<cnt;j++)
if(dis[e[j].to]>dis[e[j].u]+e[j].len)
dis[e[j].to]=dis[e[j].u]+e[j].len;
for(int j=0;j<cnt;j++)
if(dis[e[j].to]>dis[e[j].u]+e[j].len)
return 0;
return 1;
}
int main()
{
while(scanf("%d",&n),n)
{
scanf("%d",&m);
memset(in,0,sizeof(in));
cnt=0;
while(m--)
{
int u,len,k; char s[9];
scanf("%d%d%s%d",&u,&len,s,&k);//sum(au~au+len)
if(s[0]=='g')//>要转<=
else
}
int ans=bellman();
if(ans)puts("lamentable kingdom");
else puts("successful conspiracy");
}
}

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
struct node{
int u,to,len,next;
}e[10101];
int n,m,cnt;
int dis[102];
int in[102];//记录入度
{
}
int spfa(int s)
{
memset(dis,0x3f,sizeof(dis));
memset(in,0,sizeof(in));
queue<int>q;
q.push(s);
dis[s]=0;
while(!q.empty())
{
int u=q.front();q.pop();
{
int v=e[i].to;
if(dis[v]>dis[u]+e[i].len)
{
dis[v]=dis[u]+e[i].len;
q.push(v);
in[v]++;
if(in[v]>n+1)return 0;
}
}
}
return 1;
}
int main()
{
while(scanf("%d",&n),n)
{
scanf("%d",&m);
memset(in,0,sizeof(in));
cnt=0;
while(m--)
{
int u,len,k; char s[9];
scanf("%d%d%s%d",&u,&len,s,&k);//sum(au~au+len)
if(s[0]=='g')//>要转<=
else
}
//建超级源点
for(int i=0;i<=n;i++)//注意前面建的图实际上有n+1个点
int ans=spfa(n+2);
if(ans)puts("lamentable kingdom");
else puts("successful conspiracy");
}
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：94400次
• 积分：2815
• 等级：
• 排名：第14724名
• 原创：185篇
• 转载：9篇
• 译文：0篇
• 评论：33条
博客专栏
 ACM算法 文章：17篇 阅读：6323
 ACM荣耀之路 文章：91篇 阅读：41760
阅读排行
评论排行
最新评论