关闭

ObjectT5:随机森林-Multi-Forest-A chameleon in trackin

Multi-Forest:A chameleon in tracking,真够操CVPR2014 蛋的... 使用随机森林的优势,在于可以使用GPU把每棵树分到一个流处理器里运行,容易并行化实现。...
阅读(680) 评论(0)

ObjecT4:On-line multiple instance learning (MIL)学习

漂移问题是on-line tracking最主要的问题。引起漂移最主要的原因就是,分类器更新时使用的样本本身的准确率存在问题。为了解决这个问题。有的作者采取的方式是放弃掉tracker得到的结果。....。而本文作者处理的方式是:既然所得到的样本标签的准确率有问题,那么对得到的样本进行扩展,作为一个事件集。选出里面错误率最低的时间来更新目标的位置,也由此来更新分类器。准确率和速度都会好很多。...
阅读(617) 评论(0)

目标跟踪ObjectT综述介绍

图像跟踪是一个不断发展的研究方向,新的方法不断产生,再加上其它学科的方法的引入,因此对于图像跟踪算法的分类没有确定的标准。对于所有的跟踪算法,需要解决两个关键问题:目标建模和目标定位[35]。以下根据目标建模所用的视觉特征和目标定位所用的方法对跟踪算法分类。...
阅读(850) 评论(0)

时空上下文视觉跟踪(STC)

论文的关键点是对时空上下文(Spatio-Temporal Context)信息的利用。主要思想是通过贝叶斯框架对要跟踪的目标和它的局部上下文区域的时空关系进行建模,得到目标和其周围区域低级特征的统计相关性。然后综合这一时空关系和生物视觉系统上的focus of attention特性来评估新的一帧中目标出现位置的置信图,置信最大的位置就是我们得到的新的一帧的目标位置。另外,时空模型的学习和目标的检测都是通过FFT(傅里叶变换)来实现,所以学习和检测的速度都比较快。...
阅读(1347) 评论(0)

semiautomatic annotated tools

在进行实验图像取样时,可能会用到大量的标签样本,拍摄大量图片进行手工标注要消耗大量时间,半自动化的标注工具可以节省一些时间。...
阅读(730) 评论(0)

行为识别特征综述

人体行为识别目前处在动作识别阶段,而动作识别可以看成是特征提取和分类器设计相结合的过程。特征提取过程受到遮挡,动态背景,移动摄像头,视角和光照变化等因素的影响而具有很大的挑战性。本文将较全面的总结了目前行为识别中特征提取的方法,并将其特征划分为全局特征和局部特征,且分开介绍了其优缺点。...
阅读(1574) 评论(0)

人脸检测的harr检测函数

眼球追踪需要对人脸进行识别,然后再对人眼进行识别,判断人眼张合度,进而判断疲劳... 解析:人脸检测的harr检测函数使用方法...
阅读(691) 评论(0)

OpenCV: 图像连通域检测的递归算法

序言:清除链接边缘,可以使用数组进行递归运算; 连通域检测的递归算法是定义级别的检测算法,且是无优化和无语义失误的。...
阅读(898) 评论(0)

OpenCV: kalman滤波的代码段

序言:在我的疲劳检测工程 AviTest中!显示框为320*240,使用OpenCV的kalman滤波算法,可以实现简单的锁相追踪-实现对眼球的位置锁定。...
阅读(873) 评论(0)
    个人资料
    • 访问:830479次
    • 积分:11574
    • 等级:
    • 排名:第1417名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条