关闭

Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

“祖母细胞”(grandmother cell),这种学说的核心观点认为人脑中存在一些“超级神经元”,单独一个这样的神经元就能对一些复杂的目标(如人脸)有特异性反应,而不需依靠大量神经元相互协同工作。 还原论(reductionism)是个哲学概念,强调分析一个复杂事物时必须首先将其分解成相对简单的部件,然后逐一进行分析再组合。 具体到对人脑视神经机制的研究,还原论的代表是20世纪70年代开始兴起的Marr视觉理论框架[5],整体论的代表是20世纪20年代出现的Gestalt理论[6]。...
阅读(246) 评论(0)

OpenCV: OpenCV人脸检测框可信度排序

使用OpenCV进行人脸识别时,使用 casecade.detectMultiScale 函数,可输出每个检测框的置信度...
阅读(410) 评论(0)

OpenCV:OpenCV目标检测Hog+SWindow源代码分析

HOG检测计算大致的函数调用堆栈。...
阅读(369) 评论(0)

OpenCV:OpenCV目标检测Adaboost+haar源代码分析

Haar+Adaboost检测计算大致的函数调用堆栈。...
阅读(708) 评论(0)

图像的全局特征--HOG特征

它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。...
阅读(460) 评论(0)

图像的全局特征--用于目标检测

图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、LBP特征等。...
阅读(859) 评论(0)

人脸Pose检测:ASM、AAM、CLM总结

一不小心听懂了ASM、AAM、CLM算法,还是记录下来。 人脸的Pose检测需要一个 SolvePNP 的过程,对于固定三维点集模型,找出二维点集对应的位姿。此外,在track时使用点集寻找一个最优的位姿起始,应该给出一个好的起始点。...
阅读(6117) 评论(16)

ICCV2015上的GazeTracker论文总结

SLAM问题先慢慢编译一段时间,赶紧拾起来GazeTrack的事情...... ICCV2015的大部分paper已经可以下载,文章列表在这个位置、 http://www.cvpapers.com/iccv2015.html         文章题目关于Gaze的论文有         Rendering of Eyes for Eye-Shape Regis...
阅读(1698) 评论(0)

On Tutorial with Caffe--a Hands DIY DL for Vision

Caffe作为DL的一个学习框架,Caffe is a deep learning framework made with expression, speed, and modularity in mind.It is developed by the Berkeley Vision...
阅读(1266) 评论(0)

图像的全局特征--LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;...
阅读(995) 评论(0)

人脸检测的harr检测函数

眼球追踪需要对人脸进行识别,然后再对人眼进行识别,判断人眼张合度,进而判断疲劳... 解析:人脸检测的harr检测函数使用方法...
阅读(690) 评论(0)
    个人资料
    • 访问:828909次
    • 积分:11565
    • 等级:
    • 排名:第1411名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条