关闭

Pycharm:debug调试时使用参数

PyCharm中选择'Run'->Edit Configurations,输入参数...
阅读(43) 评论(0)

TensorFlow升级1.4:Cannot remove entries from nonexistent file \lib\site-pack

pip install --upgrade --ignore-installed setuptools,问题解决!...
阅读(34) 评论(0)

PAC学习理论:机器学习那些事

机器学习是有别于专家系统(基于知识/规则)的一种模式识别方法,与专家系统的构建方法不同,但目的相同。本文分析了一众机器学习方法,并给出了一些机器学习概念的通俗解释。...
阅读(2313) 评论(0)

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。...
阅读(1759) 评论(0)

Python 遍历目录

代码: import os def scanfile(path): filelist = os.listdir(path) allfile = [] for filename in filelist: filepath = os.path.join(path,filename) if os.path.i...
阅读(676) 评论(0)

压缩映射:简单最邻近搜索-(SLH)Simple Linear Hash

有得必有失! 图像相似度搜索是图像处理中的基本问题。对于大数据结构的 有效的相似性检索 严重依赖于图像表达的压缩可行性和 一个好的数据结构索引。生成和索引图像编码的很多方法被提出,但是 现存的算法无法给出 索引一个大数据库 精确的内存需要值。我们提出了 基于随机映射的 一个简单的 图像数据的二进制压缩表达。 我们的分析给出了 开创性的 清晰地陈述 解决索引问题的 内存需要。 当应用于真实图像数据库上时,这些原理有了下面显著的提高:实验结果显示出新方法 比其他现有方法 利用更少内存,并且快几倍。...
阅读(594) 评论(0)

链接分析算法系列-机器学习排序

链接分析算法之:HITS算法:HillTop算法:PageRank算法: 机器学习排序:人工标注训练数据、文档特征抽取、学习分类函数、在实际搜索系统中采用机器学习模型. 文档方法:单文档方法;文档对方法;文档列表方法;...
阅读(491) 评论(0)

PythonOpenCV:MLP用于最近邻搜索

一:C++版本的链接:       OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvSt...
阅读(494) 评论(0)

C++版的LLC代码

ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。...
阅读(466) 评论(0)

AdaBoost--从原理到实现(Code:Python)

对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法”提升(boost)为“强学习算法...
阅读(4121) 评论(0)

Python批量添加库搜索路径

被win10 给坑了,换回Win7. 重装系统后,继续使用Python,Eclipse不用重装,pydev不用重装,只需重装Python2.7.6 X64 for win即可。然后,默认已安装的Python包可以直接使用。         重新配置PyDev , 设置好Python路径,添加了默认的库路径。         又有一个问题,前期在D盘里编写了不少Python工程,需要把目录一个一...
阅读(489) 评论(0)

使用Eric构建Caffe应用程序-Baby年龄识别

训练好的Caffe网络结构,可以固定下来,直接载入程序作为数据库接口使用。本文使用Eric构建运行于Python环境下的图片识别应用程序。 若从0开始,一般可以使用最简单的六层网络,使用Caffe可以仅配置参数就可以构建简单的CNN,一般的六层网络是这样设置的: InPut——>Conv层——>Pooling层——>Conv层——> Pooling层/ ReLU整流层+pooling层——>全链接层——>softMax层——>输出类别概率。...
阅读(790) 评论(0)

使用Caffe预测遇到的问题

在使用网络预测图像时, prediction = net.predict( [input_image] ) 出现: net.image_dims[0] 不是整数情况,...
阅读(3018) 评论(0)

Caffe的Python接口

你所添加的路径是:export PYTHONPATH=/home/wishchin/caffe-master/python:$PYTHONPATH 而非:export PYTHONPATH=/home/wishchin/caffe-master/python/caffe:$PYTHONPATH 修改后update一下,或者重启,可以在任一项目中import caffe 对于Eclipse,可以在preference-python-Interpretor里面直接添加路径...
阅读(2021) 评论(0)

Apache Spark1.1.0部署与开发环境搭建 - Mark Lin

Spark是Apache公司推出的一种基于Hadoop Distributed File System(HDFS)的并行计算架构。与MapReduce不同,Spark并不局限于编写map和reduce两个方法,其提供了更为强大的内存计算(in-memory computing)模型,使得用户可以通过编程将数据读取到集群的内存当中,并且可以方便用户快速地重复查询,非常适合用于实现ML算法。...
阅读(816) 评论(0)

ML大杂烩:**常见机器学习算法公式梳理

找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个。本文写出常见데机器学习데公式表示:1.朴素贝叶斯;2. 决策树;3.Logisitic回归;4. 线性回归 ; 5.KNN算法 ;6. SVM算法; 7.Boosting算法; 8. 聚类公式; 9. 10. pLSA 浅语义分析-SVD分解; 11.LDA-隐式狄利克雷; 12. GBDT ;13. 正则化; 14.离群点检测; 15.EM算法 ; 16. Apriori关联分析; 17.F...
阅读(3375) 评论(0)

决策树构建算法之—C4.5

C4.5相比于ID3算法,改进:1.C4.5用的是子树信息增益率。2.在决策树构造过程中进行剪枝。3.对非离散数据也能处理。4 能够对不完整数据进行处理。 C4.5算法的优点是:产生的分类规则易于理解,准确率较高。 C4.5算法的缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。...
阅读(621) 评论(0)

解决Eclipse一直loading workbench无法启动的问题

原文链接:http://blog.csdn.net/androidyue/article/details/9220293 解决方法...
阅读(463) 评论(0)

PythonOpencv-分类器—SVM,KNearest,RTrees,Boost,MLP

原文链接: 上一篇文章,不是很详细,这一篇解释的清晰...
阅读(776) 评论(0)

PythonOpenCV--Rtrees随机森林

原文链接:Python opencv实现的手写字符串识别--SVM 神经网络 K近邻 Boosting、...
阅读(1479) 评论(0)
38条 共2页1 2 下一页 尾页
    个人资料
    • 访问:904402次
    • 积分:12378
    • 等级:
    • 排名:第1279名
    • 原创:290篇
    • 转载:288篇
    • 译文:29篇
    • 评论:184条