关闭

CNN结构:用于检测的CNN结构进化-结合式方法

类别失衡是影响 one-stage 检测器准确度的主要原因。那么,如果能将“类别失衡”这个因素解决掉,one-stage 不就能达到比较高的识别精度了吗? 何凯明团队采用 Focal Loss 函数 来消除这个主要障碍。 该团队设计并训练了一个简单的密集目标检测器—RetinaNet,是由一个骨干网络和两个特定任务子网组成的单一网络,骨干网络负责在整个输入图像上计算卷积特征图,并且是一个现成的卷积网络。 第一个子网在骨干网络的输出上执行卷积对象分类;第二个子网执行卷积边界框回归。...
阅读(236) 评论(0)

ES:AI 注释

为AI做注解:         AI已经出第三版,大的框架没有改变,DNN也没有引入AI这本书。         在一个算法工程师 和一个硬件工程师之间,把 不鲁棒 与不稳定 两个 形容词 联系起来,这就是转换思维的必要性。科普的本质是 用一种语法 来解释另一种语法,并保持语义不变。...
阅读(169) 评论(0)

ES : 软件工程学的复杂度理论及物理学解释

对于孤立体系而言,在其中发生的任何反应变化必然是自发的。热力学第二定律告诉我们:在孤立体系中发生的任何变化或化学反应,总是向着熵值增大的方向进行,即向着△S孤立0的方向进行的。而当达到平衡时△S孤立=0,此时熵值达到最大。...
阅读(113) 评论(0)

AI:IPPR的数学表示-CNN结构进化(AlexNet、InceptionNet、ResNet、InceptionResNet)

CNN通过训练卷积层,训练得到滤波器-卷积核,本质上是对于某种特定的模式有响应,响应最强的特征图,就是对应的分类。 模式识别要求参数更多更准确,因此CNN更大更长,结构也优化为更稀疏。 通过反复堆叠卷积层和MaxPooling层,堆叠出高精度的VGG-Net。而GoogleInceptionNet则直接构建稀疏结构,实现神经元网络,增强稀疏性。基于同等映射不减低精度思想,高速-直连网络,残差网络以概率投票方式实现另一种稀疏效果,得到更高精度。DenseNet更是扩展了直连思想。...
阅读(321) 评论(0)

AI:IPPR的模式生成-学习/训练方式(基本结构)

模式识别的专家系统         模式识别的传统意义的专家系统,是由人类专家构建知识,使用谓词逻辑,构建的超大型知识图谱,并由已知图谱推到待遍历路径和节点。专家问题的既然是人类专家获取的知识,必然有力粒度分范围的限制,在某些情况下,推演可能会导致矛盾:不同的路径会产生矛盾-相反的结果。或者粒度较大时,问题空间不能被遍历,导致无法解析。...
阅读(283) 评论(0)

人工机器:NDC-谷歌机器翻译破世界纪录,仅用Attention模型,无需CNN和RNN

NTM的成熟体DNC竟然达到了这种能力,不知道进化成完全体会是什么样子。竟然在机器翻译的准确率上超过了已经公布的所有模型,不愧是最接近现阶段最接近图灵机的有限图灵机。 在数码宝贝中,我最喜欢的是阿和的加布兽进化的究极体数码宝贝——钢铁加鲁鲁,其使用的武器绝对冷冻气——就洋溢着极其欠揍的高冷味道。...
阅读(503) 评论(1)

Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

“祖母细胞”(grandmother cell),这种学说的核心观点认为人脑中存在一些“超级神经元”,单独一个这样的神经元就能对一些复杂的目标(如人脸)有特异性反应,而不需依靠大量神经元相互协同工作。 还原论(reductionism)是个哲学概念,强调分析一个复杂事物时必须首先将其分解成相对简单的部件,然后逐一进行分析再组合。 具体到对人脑视神经机制的研究,还原论的代表是20世纪70年代开始兴起的Marr视觉理论框架[5],整体论的代表是20世纪20年代出现的Gestalt理论[6]。...
阅读(250) 评论(0)

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题...
阅读(349) 评论(0)

人工机器:作为归纳系统的深度学习

深度学习为深度神经网络机器学习。07年最先引起注目的是DNN,在语音识别上有突出的表现;深度CNN在机器视觉领域的超常表现引领模式识别领域科学界和工业界的潮流;RNN对时序和变长数据的处理优势促使语音识别和视频分析又有较大发展;此外可应用于增强学习的新的深度网络形式可以完成游戏策略训练过程,提供端到端的 模型训练方式:DeepMind用ReinforcementLearning玩游戏 。...
阅读(324) 评论(0)

OpenCV:OpenCV目标检测Boost方法训练

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年(Adaboost原理与推导)提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在 每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。...
阅读(398) 评论(0)

AI:狄拉克之海上的涟漪

写的太糙,其中还有一些理论错误,来不及修改! 当他试着用一种轻松的口吻诉说一些事情时,我会明白,其实我们都明白,在他的心里绝对不是平静,而是难以平复的涟漪。即使如波浪般翻滚的情绪,总是被他压制,在一个如胸怀宽广的海洋里,再大的风浪也只是涟漪。...
阅读(482) 评论(0)

AI.框架理论.语义网.语言间距.孤单

AI几乎是计算机科学家的梦想,自动化比计算机发展的要早的多。早期的自动化节省了大量人力,激发了人类懒惰的滋长和对自身进化缓慢的郁闷,有人希望自己创作的机器能够更智慧,可以省去自己动手操作的麻烦,把人本身....这是一个哲学问题了,至于源头,我已不清楚人生意义的一千种解释。...
阅读(852) 评论(0)

人工机器:TM、VNM和NTM的内存机制

从图灵机的原始模型分析,神经图灵机包含两个基本组成部分:神经网络控制器和记忆库,控制器通过输入输出向量和外界交互。不同于标准神经网络的是,控制器还会使用选择性的读写操作和记忆矩阵进行交互。类比于图灵机,我们将网络的参数化这些操作的输出称为“读头”。输入向量和网络结构影响注意力的聚焦,决定寻址位置。...
阅读(293) 评论(0)

PAC学习理论:机器学习那些事

机器学习是有别于专家系统(基于知识/规则)的一种模式识别方法,与专家系统的构建方法不同,但目的相同。本文分析了一众机器学习方法,并给出了一些机器学习概念的通俗解释。...
阅读(1967) 评论(0)

基于神经网络的混合计算(DNC)-Hybrid computing using a NN with dynamic external memory

常规计算机算法能够处理复杂的大型数据结构,比如英特网和社交网络,但必须经过人类“手动”编程。神经网络则能通过示例学习如何识别复杂模式,但很难解析或组织复杂的数据结构。Alex Graves、Greg Wayne及同事,开发了一种名叫可微分神经计算机(DNC)的混合型学习机器,它由能从外部存储结构(类似常规计算机的随机存取存储器)读写数据的神经网络组成。因此,DNC能在没有先验知识和专门编程的条件下,仅仅通过试错方法来学习规划伦敦地铁路线,还能完成方块拼图游戏。...
阅读(877) 评论(0)

人工机器:Neural Turing Machines(NTM)

NTM通过融合一个注意力处理过程进行交互的外部存储器(external memory),来增强神经网络的能力。新系统等同于图灵机或者冯·诺依曼体系,但每个组成部分都是端到端可微的,因此可以使用梯度下降进行高效训练。初步的结果显示神经网络图灵机能够从输入和输出样本中推理出(infer)简单的算法,如复制、排序和回忆。...
阅读(1061) 评论(2)

支持向量机的近邻理解:图像二分类为例(3)

在图像识别领域,灰度图像被称为传说中的2维张量,任意图像为由所有二类图像构成的这个二维张量空间内的一个点。由人类专家完成图像属性归纳,把二维张量空间图像的特征显式的归结为一维张量空间的n维向量上,被称为特征提取。一般提取的特征并不一定能在n维向量空间中线性可分,这就需要再由模型进行一次映射,把向量样本转换到新的空间实现线性可分。...
阅读(474) 评论(0)

支持向量机的近邻理解:图像二分类为例(2)

从可见样本归纳出假设空间,与事实空间一般不会相同,这就意味着泛化是个概率性的问题。在图1中的例子中可以看出,严格来说,符合专家直觉特征提取过程并不符合甚至可视样本空间的要求,二维线性不可分映射到三维向量空间线性可分是对特征提取的弥补。 一切直觉可计算的,便是递归可计算的。既然符合直觉的特征提取看似永远不能满足仅仅是可见样本空间的要求,就使用一劳永逸的方案,使用模型来解决特征空间的可描述性。...
阅读(726) 评论(0)

支持向量机的近邻理解:图像二分类为例(1)

一个古老的哲学原理:世界并不是以小包的形式来到我们面前,除非遍历整个空间,任何训练得到的模型都是过拟合的。面对学习问题,首先面对这一个空间的认知问题,对空间结构的认识来自于接口,而全面的认识来自于遍历。 在认识一个未知空间之前,一般的套路是由接口获取的数据对这个空间进行简单假设,迭代修改理解规则,最后到遍历。...
阅读(495) 评论(0)

MxNet教程:使用一台机器训练1400万张图片

此方法描述了如何是使用一台机器 -4张GTX980互联在一台机器上,训练8.5天训练完整个ImageNet 数据集,此数据集有14,197,087张图片。 1.存储海量数据的方法。 2.最小化内存的计算代价。 3.如何快速训练模型。...
阅读(2128) 评论(0)
65条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:831757次
    • 积分:11589
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条