关闭

计算一组向量相似度

以多维几何空间考虑,两组向量的相似度可以描述为在多维几何空间中的距离关系,距离越远,相似度越低。 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。...
阅读(106) 评论(0)

Morse理论:拓扑不变性特征匹配原理

微分拓扑的一个重要分支。通常是指两部分内容:一部分是微分流形上可微函数的莫尔斯理论,即临界点理论;另一部分是变分问题的莫尔斯理论,即大范围变分法。...
阅读(478) 评论(0)

PAC学习理论:机器学习那些事

机器学习是有别于专家系统(基于知识/规则)的一种模式识别方法,与专家系统的构建方法不同,但目的相同。本文分析了一众机器学习方法,并给出了一些机器学习概念的通俗解释。...
阅读(1963) 评论(0)

直观判断图像是否可以被实时处理

直观判断给出了实时性的提示,那怎样判断呢? 以下方法(现在的处理能力所达到的):         对于识别,是否可以在第一眼的时间完成工作?若直观上认为可以完成,则图片对于算法是可以实时处理的;若需要进一步查看才能判别,则图片对于算法是不能实时处理的。         识别图片中的老虎?         图片分析:         和智商真的没有关系,树上还有一只猎豹呢!...
阅读(631) 评论(0)

职业:图像处理入门教程

1 通识课程基础          高等数学的基础概念是入门基础,数学知识不言其多。          可以参考的基础书籍有《微积分》《数学/泛函分析》《概率论与数理逻辑》 ,很多图像学的基本概念可以从这三本书上找到。          偏计算机科学的《 离散数学 》,这是计算机科学的基础数学。          偏控制理论的《非线性动力学》,复杂度/非线性 的提升导致不可控性。...
阅读(777) 评论(0)

统计:mAP的中文意思

区别在于Precision,Recall, F-score, MAP主要用于信息检索,而ROC曲线及其度量指标AUC主要用于分类和识别,ROC的详细介绍见上面的blog,这里的Precision、Recall和上篇blog的计算结果其实是一样的,只是这里从检索的角度进行理解。...
阅读(569) 评论(0)

C++版的LLC代码

ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。...
阅读(443) 评论(0)

最优化方法:梯度下降法

一、算法过程 最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了的一种算法。但是,它的理念是其他某些算法的组成部分,或者说是在其他某些算法中,也有最速下降法的“影子”。因此,我们还是有必要学习一下的。 我很久以前已经写过一篇关于最速下降法的文章了,但是这里我还打算再写一篇,提供更多一些信息,让大家可以从更简...
阅读(907) 评论(0)

高雅的数学表示

高雅的数学描述会提高你论文的等级和加强评审人对你基础功底的认可。例如泛函分析、集合、测度、度量空间和拓扑空间、现代代数、微分几何等数学方面的入门知识和表达方法对工科研究者大有意义。只要用得恰当,会取得良好效果。自然,这要求研究者具有较深入的数学背景。决定于你的数学背景,把握数学描述技巧的伸缩性可以很大。 当你使用高雅的数学描述方法时,一个最紧要的要求就是准确。如果你还没有把握好,宁可不用,不可滥用。否则会弄巧成拙,造成对你工作的伤害。...
阅读(500) 评论(0)

EKF优化:协方差的意义和计算公式、Code

文章解释协方差的统计学意义,为大矩阵优化做阐述; 使用Eigen计算1000维的方阵大概需要200ms的时间,相对于matlab默认开启GPU加速,时间上消耗的太多了。 参考:比较OpenBLAS、Matlab、MKL、Eigen的基础计算性能。...
阅读(1776) 评论(0)

最优化:**回归/拟合方法总结

回归分析是一种预测性的建模技术,研究因变量(目标)和自变量(预测器)之间的关系。通常用于预测分析,时间序列模型以及发现变量之间的因果关系。 1. Linear Regression线性回归 2.Logistic Regression逻辑回归 3. Polynomial Regression多项式回归 4. Stepwise Regression逐步回归 5. Ridge Regression岭回归 6. Lasso Regression套索回归 7.ElasticNet回归 8.多类分类的SoftMax回...
阅读(3470) 评论(0)

LASSOS方程--图像降噪

前言:       Tibshirani(1996)提出了Lasso( The Least Absolute Shrinkage and Selectionator operator ) 算法。这种算法通过构造一个惩罚函数获得一个精炼的模型;通过最终确定一些指标的系数为零,LASSO算法实现了指标集合精简的目的。这是一种处理具有复共线性数据的有偏估计。Lasso的基本思想是在回归系数的绝对值之和...
阅读(888) 评论(0)

机器学习中的群论方法

群论最初应用于高次方程解析解可解性的研究,致力于寻找方程解集的规则化和抽象化,并提取可解性的一般规律。在机器学习方面,模式分类主要应用数学方法,剥离概率范畴,一些模式分离的方法与方程解析形式化的方法有几分相似,群论方法也应用于机器学习领域。...
阅读(819) 评论(0)

图像特征综述

图像特征提取为一个稳定哈希过程,特征提取的有效性取决于样本本身데分布和样本集데大小。...
阅读(749) 评论(0)

ML:流形学习

流形在某一点的维度就是该点映射到的欧氏空间图的维度(定义中的数字n)。连通流形中的所有点有相同的维度。有些作者要求拓扑流形的所有的图映射到同一欧氏空间。这种情况下,拓扑空间有一个拓扑不变量,也就是它的维度。其他作者允许拓扑流形的不交并有不同的维度。 自从2000年以后,流形学习被认为属于非线性降维的一个分支。众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Linear Embedding)。...
阅读(836) 评论(0)

生成式模型:LDA

LDA-Latent Dirichlet Allocation JMLR-2003 摘要:本文讨论的LDA是对于离散数据集,如文本集,的一种生成式概率模型。LDA是一个三层的贝叶斯分层模型,将数据集中每一项,如每个文本,建模为某些未知的topic组成的集合的混合。每个topic又建模为某种混合概率分布。在文本建模中,话题的概率就提供了每个doc的具体表示。...
阅读(596) 评论(0)

统计之都 http://cos.name/

http://cos.name/ IMS:一个洲际人际交流网络(为学生免费提供会员资格)...
阅读(1198) 评论(0)

数学空间引论

曾经在豆瓣上看到了一篇数学进阶的文章,是翻译过来的,内容是:从基本算术开始,引出未解决的问题;逐步递进,直至黎曼流形,拓扑空间等等。内容是很浅显易懂,不过也算得上长篇大论了。...
阅读(548) 评论(0)

***稀疏表达:向量,矩阵,张量

稀疏肯定是好的,关键是怎样稀疏,要得到什么样的稀疏,以及要获得怎样的模式 , 说到底还是专家데功劳。 稀疏表达是近年来SP, ML, PR, CV领域中的一大热点,文章可谓是普天盖地,令人目不暇给。老板某门课程的课程需要大纲,我顺道给扩展了下,就有了这个上中下三篇介绍性质的东西。...
阅读(2289) 评论(0)
    个人资料
    • 访问:830142次
    • 积分:11572
    • 等级:
    • 排名:第1417名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条