关闭

AI:PR的数学表示-传统方法PR

在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法。在结构上,几乎所有的PR方法都是可解释的。而在规则和语义上,ANN方法一般是无法解释的,称之为PR的语义黑箱。 对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数。...
阅读(248) 评论(0)

Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较

Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差,场景可扩展性不强。 另外通过NDP特征池是可以重建出原图的,也就是说特征池包含了原图片中的所有信息...
阅读(1110) 评论(0)

OpenCV:Adaboost训练时数据扩增

更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。...
阅读(253) 评论(0)

SiftGPU:编译SiftGPU出现问题-无法解析的外部符号 glutInit

SiftGPU的原始库可以编译通过。但不能使用,在使用时引出了一连串96个编译错误。...
阅读(505) 评论(1)

图像局部显著性—点特征(SiftGPU)

SIFT的计算复杂度较高。 SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)...
阅读(430) 评论(0)

OpenCV:OpenCV目标检测Hog+SWindow源代码分析

HOG检测计算大致的函数调用堆栈。...
阅读(368) 评论(0)

OpenCV:OpenCV目标检测Adaboost+haar源代码分析

Haar+Adaboost检测计算大致的函数调用堆栈。...
阅读(706) 评论(0)

图像局部显著性—点特征(Fast)

Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated Segment Test》,简称FAST。注意:FAST只是一种特征点检测算法,并不涉及特征点的特征描述。...
阅读(492) 评论(0)

图像的全局特征--HOG特征

它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。...
阅读(459) 评论(0)

图像局部显著性—点特征(FREAK)

参考文章:Freak特征提取算法  圆形区域分割...
阅读(329) 评论(0)

图像局部显著性—点特征(SURF)

2006年的SURF(2006年的ECCV);SURF算法是对SIFT算法加强版,同时加速的具有鲁棒性的特征。第二、标准的SURF算子比SIFT算子快好几倍,并且在多幅图片下具有更好的鲁棒性。SURF最大的特征在于采用了harr特征以及积分图像integral image的概念,这大大加快了程序的运行速度。...
阅读(1107) 评论(0)

图像的全局特征--用于目标检测

图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、LBP特征等。...
阅读(856) 评论(0)

图像局部显著性—点特征(GLOH)

2005年MIko等人提出的SIFT的变子,改进为关键点周围的区间划分,由田字格划分修改为 八象限圆格划分;在很大的一个训练集上训练得到PCA模型,再将272维直方图映射到一个128维的描述子。在整体的测试中,比SIFT性能有显著的提高。...
阅读(528) 评论(0)

PCL:描述三维离散点的ROPS特征(Code)

三维点云为三维欧式空间点的集合。对点云的形状描述若使用局部特征,则可分为两种:固定世界坐标系的局部描述和寻找局部主方向的局部描述,ROPS特征为寻找局部主方向的特征描述。...
阅读(951) 评论(0)

SLAM: Orb_SLAM中的ORB特征

ORB是是ORiented Brief 的简称。ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt Konolige and Gary Bradski,ORB: an efficient alternative to SIFT or SURF, ICCV 2011 没有加上链接是因为作者确实还没有放出论文,不过OpenCV2.3RC中已经有了实现,WillowGarage有一个talk也提到了这个算法,因此我不揣浅陋,在这里总结一下。...
阅读(3483) 评论(1)

图像描述:各种维度图像的逻辑描述形式

在图像分析处理领域,图像的逻辑描述形式是计算机处理图像的基础,逻辑形式在 逻辑层面 描述出:图像到底是什么?          在几何数学中,空间作为集合的存在形式,根据不同的约束可以划分为不同的空间。具有拓扑结构的集合构成拓扑空间,局部可度量且正交的拓扑空间为流形,全部可度量的(只用一个坐标系即可标定)且元素集合为实数域上的线性空间为欧式空间。...
阅读(1084) 评论(0)

SLAM: 图像角点检测的Fast算法(时间阈值实验)

作为角点检测的一种快速方法,FastCornerDetect算法比Harris方法、SIft方法都要快一些,应用于实时性要求较高的场合,可以直接应用于SLAM的随机匹配过程。算法来源于2006年的Edward Rosten 和 Tom Drummond的论文 “Machine learning for high-speed corner detection”,并在(在2010年再次被修订)...
阅读(893) 评论(0)

SLAM: 图像角点检测的Fast算法(OpenCV文档)

官方链接:http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast-algorithm-for-corner-detection        原文链接:http://blog.csdn.net/candycat1992/article/details/22285979...
阅读(1640) 评论(0)

图像局部显著性—线特征

一维显著特征常见表示为边缘。边缘检测的预处理常用 高斯模糊;主要数学运算为计算一阶和二阶导数,寻找梯度和零交叉点,其中梯度计算可用快速卷积码实现;...
阅读(1345) 评论(0)

图像局部显著性—点特征(SIFT为例)

基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。 几个主要的特征点算法年代发展表: 1. 1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004); 2. 2005年的GLOH(2005年的PAMI期刊); 3. 2006年的SURF(2006年的ECCV); 4. 2010年的Brief特征(ECCV2010 ); 5. 2011年的brisk算法(ICCV2011);...
阅读(7303) 评论(2)
39条 共2页1 2 下一页 尾页
    个人资料
    • 访问:825340次
    • 积分:11529
    • 等级:
    • 排名:第1423名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:180条