关闭

TensorFlow升级1.4:Cannot remove entries from nonexistent file \lib\site-pack

pip install --upgrade --ignore-installed setuptools,问题解决!...
阅读(13) 评论(0)

收藏一下:各种神经网络结构进化与关联(雷锋网)

前言:        看了一篇介绍各种神经网络的文章,整理一下....
阅读(25) 评论(0)

Eclipse + Pydev开发Python时import报错解决方法

添加配置之后会导致上层目录.. 的引用不能成功,于是换用PyCharm作为开发工具。 使用Eric6和Pycharm混合,取代PyDev...
阅读(37) 评论(0)

TensorFlow:Windows下使用TensorFlow-Python版本

解决方法:下载whl文件: protobuf-3.4.0-py3-none-any.whl tensorflow-1.4.0-cp35-cp35m-win_amd64.whl 直接安装...
阅读(44) 评论(0)

CNN结构:MXNet设计和实现简介

实时的计算引擎,根据硬件定制的计划性的操作运算;高效的CPU和GPU内存分配和回收机制;全局资源管理器,例如随机生成的数据和临时空间; 同步动态的N维数组,可提供弹性规划的MxNet程序;; 静态的符号图,提供高效的符号图的执行和优化; 一个前向计算和回溯优化的操作符; SimpleOp: 一个标准样式的扩展了NDArray的操作符系列。 网络配置-符号表的构建。用以构建计算图的一种通路; KVStore: 键-值存储接口,给出了参数同步的有效方式;Data Loading(IO): 分布式的IO系...
阅读(80) 评论(0)

VS编译时使用/去除NuGet管理库

之前一直使用NuGet来管理一些第三方的库,但是每次check in代码时候为了保证编译通过,都需要把对应的packages check in。 同样,在相应的设置界面关闭即可。 若只是想使用本地的一些软件包,而不是网络版本,打开工程的package.config文件,删除掉特定的行即可。...
阅读(108) 评论(0)

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。...
阅读(143) 评论(0)

推荐系统中基于深度学习的混合协同过滤模型

协同过滤的一个关键点是协同,即找到用户喜好相似的K个用户,一个多维向量的K近邻查找方法。 提出了一种Additional Stacked Denoising Autoencoder(aSDAE)的深度模型用来学习User和Item的隐向量,该模型的输入为User或者Item的评分值列表,每个隐层都会接受其对应的Side information信息的输入(该模型灵感来自于NLP中的Seq-2-Seq模型,每层都会接受一个输入,我们的模型中每层接受的输入都是一样的,因此最终的输出也尽可能的与输入相等)。...
阅读(256) 评论(0)

CNN:Windows下编译使用Caffe和Caffe2

Windows下faster-rcnn的编译可以分为2个部分,caffe的编译和faster-rcnn的编译。由于原始的版本大多基于linux,感谢各位前辈的移植与分享,现在windows版本的在网上都可以找到。但对于初学者可能还是有一些坑要填。以下是我遇到的一些问题和解决方法,用以存档。...
阅读(764) 评论(1)

DNN:windows使用 YOLO V1,V2

一个yolo,然后进入yolo-windows-master\build\darknet\下面,用vs2013直接打开darknet.sln,选择,x64版本,只要配置OpenCV和pthreads就可以,...
阅读(363) 评论(0)

CNN结构:用于检测的CNN结构进化-结合式方法

类别失衡是影响 one-stage 检测器准确度的主要原因。那么,如果能将“类别失衡”这个因素解决掉,one-stage 不就能达到比较高的识别精度了吗? 何凯明团队采用 Focal Loss 函数 来消除这个主要障碍。 该团队设计并训练了一个简单的密集目标检测器—RetinaNet,是由一个骨干网络和两个特定任务子网组成的单一网络,骨干网络负责在整个输入图像上计算卷积特征图,并且是一个现成的卷积网络。 第一个子网在骨干网络的输出上执行卷积对象分类;第二个子网执行卷积边界框回归。...
阅读(427) 评论(0)

Caffe2:使用Caffe构建LSTM网络

一般所称的LSTM网络全叫全了应该是使用LSTM单元的RNN网络。...
阅读(472) 评论(0)

CNN结构:用于检测的CNN结构进化-一站式方法

人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型。 YOLO的特别之处,在于把检测问题表示为一个分类问题,而不是以往的寻找绑定框/包围盒+分类的问题。使用一个网络实现检测的功能,成为一个端到端的图像检测系统。...
阅读(408) 评论(2)

CNN结构:用于检测的CNN结构进化-分离式方法

基于CNN的目标检测框架主要有两种:一种是 one-stage ,例如 YOLO、SSD 等,这一类方法速度很快,但识别精度没有 two-stage 的高,其中一个很重要的原因是,利用一个分类器很难既把负样本抑制掉,又把目标分类好。 另外一种目标检测框架是 two-stage ,以 Faster RCNN 为代表,这一类方法识别准确度和定位精度都很高,但存在着计算效率低,资源占用大的问题。...
阅读(202) 评论(0)

AI:IPPR的数学表示-CNN结构进化(AlexNet、InceptionNet、ResNet、InceptionResNet)

CNN通过训练卷积层,训练得到滤波器-卷积核,本质上是对于某种特定的模式有响应,响应最强的特征图,就是对应的分类。 模式识别要求参数更多更准确,因此CNN更大更长,结构也优化为更稀疏。 通过反复堆叠卷积层和MaxPooling层,堆叠出高精度的VGG-Net。而GoogleInceptionNet则直接构建稀疏结构,实现神经元网络,增强稀疏性。基于同等映射不减低精度思想,高速-直连网络,残差网络以概率投票方式实现另一种稀疏效果,得到更高精度。DenseNet更是扩展了直连思想。...
阅读(569) 评论(0)

AI:IPPR的数学表示-CNN可视化语义分析

ANN是个语义黑箱的意思是没有通用明确的函数表示,参数化的模型并不能给出函数的实际意义,甚至不能以解析函数的形式表示。而CNN在图像处理方面具有天然的理论优势,而Conv层和Polling层,整流层等都有明确的意义。可以跳过函数形式直接进行语义级别的解析。 可视化是直观理解的一个重要方式,CNN可视化可以辅助对特定数据集的特定网络进行语义级别的解析。...
阅读(112) 评论(0)

AI:IPPR的模式生成-学习/训练方式(基本结构)

模式识别的专家系统         模式识别的传统意义的专家系统,是由人类专家构建知识,使用谓词逻辑,构建的超大型知识图谱,并由已知图谱推到待遍历路径和节点。专家问题的既然是人类专家获取的知识,必然有力粒度分范围的限制,在某些情况下,推演可能会导致矛盾:不同的路径会产生矛盾-相反的结果。或者粒度较大时,问题空间不能被遍历,导致无法解析。...
阅读(1332) 评论(0)

AI:IPPR的数学表示-CNN结构分析(基本结构)

深度学习以“数据驱动”范式颠覆了“人造特征”范式,完成“特征学习”,这是一个重大的进步。但与此同时,它自己又陷入了一个“人造结构”窠臼中。06年hinton教授发表在nature上的最初的论文,多层压缩映射。给出的深度学习的方案是无监督学习获取网络结构,之后再通过有监督学习优化参数,DNN网络的引爆点恰恰是结构学习。大量利用未标记数据学习网络结构是深度学习最初的构想。   但无论Hinton教授组最初设计的AlexNet,还是后来的VGG,GoogLeNet,ResNet等等,都是富有经验的专家人工设计出来...
阅读(226) 评论(0)

AI:IPPR的数学表示-CNN参数分析

那么放开形式的限制,使用不受限制的网络来代替特定形式的网络。比如使用不受SIFT函数形式限制的局部链接层取代上图中的SIFT特征提取层,使用数据驱动来完成类似的功能,得到参数化的网络。 愈来愈多的类别和要求更高的精度要求网络越来越大,越变越胖,而随着参数暴涨,网络训练更加困难,分治法又有了用武之地。为使参数变少,使训练变得相应简单,网络逐渐变深,变得更长。...
阅读(288) 评论(0)

AI:IPPR的数学表示-CNN方法

既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程。越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法——CNN方法。IPPR又从分治法回到一站式方法。...
阅读(263) 评论(0)
75条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:900074次
    • 积分:12341
    • 等级:
    • 排名:第1293名
    • 原创:290篇
    • 转载:288篇
    • 译文:29篇
    • 评论:184条