关闭

OpenCV: Kmeans的使用一维和二维点集

OpenCVKmeans算法默认使用了Kmeans++选取种子点 参考:OpenCv中Kmeans算法实现和使用 //效果:根据半径聚类,并不一定能得到好的结果。...
阅读(124) 评论(0)

Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较

Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差,场景可扩展性不强。 另外通过NDP特征池是可以重建出原图的,也就是说特征池包含了原图片中的所有信息...
阅读(1128) 评论(0)

OpenCV: OpenCV人脸检测框可信度排序

使用OpenCV进行人脸识别时,使用 casecade.detectMultiScale 函数,可输出每个检测框的置信度...
阅读(415) 评论(0)

OpenCV:Adaboost训练时数据扩增

更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。...
阅读(266) 评论(0)

图像局部显著性—点特征(SiftGPU)

SIFT的计算复杂度较高。 SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)...
阅读(442) 评论(0)

OpenCV:OpenCV目标检测Boost方法训练

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年(Adaboost原理与推导)提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在 每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。...
阅读(398) 评论(0)

OpenCV:OpenCV目标检测Hog+SWindow源代码分析

HOG检测计算大致的函数调用堆栈。...
阅读(374) 评论(0)

OpenCV:OpenCV目标检测Adaboost+haar源代码分析

Haar+Adaboost检测计算大致的函数调用堆栈。...
阅读(715) 评论(0)

OpenCV:OpenCV中的 parallel_for 和opencv parallel_for_

OpenCV使用OMP完成并行运算,在使用AdaBoost检测的时候,在cascadedetect.cpp 里面,大量使用 parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,candidatesVector,...
阅读(756) 评论(0)

nvcc fatal : Unsupported gpu architecture 'compute_11'

使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会出现 nvcc fatal : Unsupported gpu architecture 'compute_11' 问题。原因是CUDA7.5不支持较为古老的显卡版本,因此1.1,2.0,2.1,之类的显卡选项是多余的。...
阅读(993) 评论(0)

图像局部显著性—点特征(Fast)

Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated Segment Test》,简称FAST。注意:FAST只是一种特征点检测算法,并不涉及特征点的特征描述。...
阅读(494) 评论(0)

图像的全局特征--HOG特征

它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。...
阅读(465) 评论(0)

图像局部显著性—点特征(FREAK)

参考文章:Freak特征提取算法  圆形区域分割...
阅读(335) 评论(0)

图像局部显著性—点特征(SURF)

2006年的SURF(2006年的ECCV);SURF算法是对SIFT算法加强版,同时加速的具有鲁棒性的特征。第二、标准的SURF算子比SIFT算子快好几倍,并且在多幅图片下具有更好的鲁棒性。SURF最大的特征在于采用了harr特征以及积分图像integral image的概念,这大大加快了程序的运行速度。...
阅读(1116) 评论(0)

图像的全局特征--用于目标检测

图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、LBP特征等。...
阅读(869) 评论(0)

图像局部显著性—点特征(GLOH)

2005年MIko等人提出的SIFT的变子,改进为关键点周围的区间划分,由田字格划分修改为 八象限圆格划分;在很大的一个训练集上训练得到PCA模型,再将272维直方图映射到一个128维的描述子。在整体的测试中,比SIFT性能有显著的提高。...
阅读(546) 评论(0)

OpenCV:OpenCV图像旋转的代码

OpenCV图像旋转的代码 cv::transpose( bfM, bfM ) 前提:使用两个矩阵Mat型进行下标操作是不行的,耗费的时间太长了。直接使用两个指针对拷贝才是王道。不知道和OpenCV比较效果如何。...
阅读(250) 评论(0)

图方法:二分无向图的联通子图查找

二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。...
阅读(300) 评论(0)

Photoshop显示RGB值问题

Bmp与JPEG格式的不同之处在哪里?         使用OpenCV读写图像,然后由Photoshop显示时候结果并不相同,使用jpg格式的图像灰度值明显大于bmp格式,但jpg格式的显示信息是错误的。         不知道 什么解........
阅读(503) 评论(0)

OpenCV : 基于切线方向的边缘增强算法

使用切线方法,对切线方向上的边缘进行强化: //在种子点方向上寻找合适的梯度,用于寻找边缘...
阅读(1391) 评论(1)
47条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:833340次
    • 积分:11607
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条