关闭

时序分析:隐马尔可夫模型

在AI综合领域,HMM模型是离散贝叶斯网络,最主要用于非确定性(概率)推理。 上次的文章被标记为链接,真是有意思。HMM是一个稀疏的贝叶斯网络。 其中,维特比算法(Viterbi Algorithm)为一个经典算法,用于找到可能性最大的隐藏序列。 即是通常我们都有一个特定的HMM,然后根据一个可观察序列去找到最可能生成这个可观察序列的隐藏序列。...
阅读(2197) 评论(0)

人脸Pose检测:ASM、AAM、CLM总结

一不小心听懂了ASM、AAM、CLM算法,还是记录下来。 人脸的Pose检测需要一个 SolvePNP 的过程,对于固定三维点集模型,找出二维点集对应的位姿。此外,在track时使用点集寻找一个最优的位姿起始,应该给出一个好的起始点。...
阅读(6134) 评论(16)

时序分析:HMM模型(状态空间)

关于HMM模型:隐马尔科夫模型 和动态贝叶斯网络...
阅读(1755) 评论(0)

ANN:ML方法与概率图模型

— 产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs — 判别式模型(判别模型)估计条件概率P(y|x),因为没有x的知识,无法生成样本,只能判断分类:SVMs,CRF,MEM CRF条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。...
阅读(1979) 评论(0)

生成式模型:LDA

LDA-Latent Dirichlet Allocation JMLR-2003 摘要:本文讨论的LDA是对于离散数据集,如文本集,的一种生成式概率模型。LDA是一个三层的贝叶斯分层模型,将数据集中每一项,如每个文本,建模为某些未知的topic组成的集合的混合。每个topic又建模为某种混合概率分布。在文本建模中,话题的概率就提供了每个doc的具体表示。...
阅读(600) 评论(0)

生物信息之ME, HMM, MEMM, CRF

一:最大熵模型 :在满足已有证据的情况下不做任何其他假设,也就是熵最大 二:隐马尔可夫模型:当我们观察到观测序列后,要找到最佳的状态序列。 三:最大熵隐马 Maximum Entropy Markov Model 四:条件随机场: 用局部信息去优化全局Conditional Random Fields。...
阅读(741) 评论(0)
    个人资料
    • 访问:832486次
    • 积分:11596
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条