三维重建面试13:点云的局部特征总结

原创 2017年08月19日 23:20:38

           三维场景中物体检测也可以使用特征点方法+词包方法的通用框架。其中BOW方法是无差别的,特征点方法与二维图像不同的是点云的数据格式问题,一般表示为对点云曲面进行特征提取。可以使用基于八叉树的方法进行特征点提取,也可以使用深度Map图的方法或有序点云方法进行特征点提取。

           注意事项:若使用有序点云方法,希望注意点云的连贯性,在断开的地方可以使用特殊的特征计算方法,避开深度断开位置点云。

          在ICRA和IROS会议上,出现了大量的点云局部特征提取的论文,其中有3d-SURF,ROPS,

三维点云目标提取总结(续)

简单介绍了一下三维点云的目标提取方法流程,针对这个领域提出了个人的一些见解。...
  • a2008301610258
  • a2008301610258
  • 2015年09月28日 15:31
  • 7822

三维点云目标提取总结

介绍关于三维激光点云的一般性应用以及三维激光点云的目标识别。
  • a2008301610258
  • a2008301610258
  • 2015年09月28日 10:10
  • 9340

PCL点云特征描述与提取(1)

3D点云特征描述与提取是点云信息处理中最基础也是最关键的一部分,点云的识别。分割,重采样,配准曲面重建等处理大部分算法,都严重依赖特征描述与提取的结果。从尺度上来分,一般分为局部特征的描述和全局特征的...
  • u013019296
  • u013019296
  • 2017年04月11日 13:54
  • 1828

PCL中特征提取部分的翻译和总结整理

  • u013832676
  • u013832676
  • 2017年05月30日 00:27
  • 393

三维重建面试11:点云的全局特征总结

点云的检测和分类一般使用全局特征,传统的检测方法严重依赖于点云的场景分割,所幸的是点云的分割一般情况下比二维灰度图像和彩色图像更容易进行。基于分割方法的好处是,一旦目标被正确分割,点云分类即可以转换为...
  • wishchin
  • wishchin
  • 2017年07月04日 01:46
  • 1931

三维重建面试7:Visual SLAM算法笔记

此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充。介绍了基于滤波器的方法、基于前后端的方法、且介绍了几个SensorFusion方法,总结比较全面。...
  • wishchin
  • wishchin
  • 2017年06月20日 19:53
  • 2453

图像局部特征学习(笔记1之Harris角点)

角点:有两种比较普遍的定义 角点是两个边缘的交点 角点是邻域内具有两个主方向的特征点(这个主方向,其实我一直是迷糊,但是参考PCA,觉得其想说的是在在两个方向上灰度变化比较大,也就是此时的角点邻域内的...
  • u013207865
  • u013207865
  • 2015年09月19日 11:12
  • 489

PointNet++阅读笔记

总结一下自己在阅读PointNet++的论文的过程中的理解,欢迎大家指出存在的错误,一起进步~...
  • yongxiebin9947
  • yongxiebin9947
  • 2017年12月04日 10:05
  • 817

图像局部特征(一)--概述

原文: http://www.cnblogs.com/ronny/p/4260167.html 研究图像特征检测已经有一段时间了,图像特征检测的方法很多,又加上各种算法的变形,所以难以在短时间内全面的...
  • App_12062011
  • App_12062011
  • 2016年06月25日 21:42
  • 3205

SIFT局部特征算法

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)...
  • u012556077
  • u012556077
  • 2015年07月26日 23:13
  • 805
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:三维重建面试13:点云的局部特征总结
举报原因:
原因补充:

(最多只允许输入30个字)