DNN:windows使用 YOLO V1,V2

转载 2017年09月05日 13:34:32

          本文有修改,如有疑问,请移步原文。

          原文链接:  YOLO v1之总结篇(linux+windows)         

                  此外:  YOLO-V2总结篇    Yolo9000的改进还是非常大的

          由于原版的官方YOLOv1是只支持linux 和mac的,如果要自己修改,可能需要走好对哦的坑,同时还得具备一定的技术水平,幸好有革命斗士为我们走出了这一步,

          可以参考下面2个YOLO-windows,

https://github.com/frischzenger/yolo-windows

https://github.com/AlexeyAB/yolo-windows

         推荐使用第二个版本,比较新,使用CUDA8.0,第一个版本使用CUDA6.5.

         推荐使用YOLO-V2版本,V1版本没有编译成功。

         随便下载上面的一个yolo,然后进入yolo-windows-master\build\darknet\下面,用vs2013直接打开darknet.sln,选择,x64版本,只要配置OpenCV和pthreads就可以,

为了方便大家参考,这里贴出本人的环境配置...........................

         .................................


         配置好编译时,出现:error C2275: 'size_t'.....问题

         解决方法: 把出错的地方,变量声明全部移到函数头部.....

         此外,一步编译成功......

         

编译成功:

             进入,yolo-windows-master\build\darknet\x64\Release\下面,

             去官网链接,http://pjreddie.com/media/files/yolov1.weights,下载好yolov1.weightshttps://pjreddie.com/darknet/yolo/,使用

https://pjreddie.com/media/files/yolo.weights

           得到预训练的权值。

            然后运行,darknet.cmd darknet_coco.cmd,随便输入一张图像,例如,person.jpg,就会出来运行效果。

            其中第一个为cpu+debug版本,第二个为cpu+release版本,


下图为运行结果:

               

       


编译cudnn版本

        在convlutional_kernels.cu 工程出现 unsolved external symbol cudnn_handle.

        在darkNet源代码里面 cuda.h 已经声明!


训练篇:

这里假定我要实现一个简单的人脸检测。

(1)首先就是数据集的准备,这里建议使用python+QT开发的抠图小工具,labelImg。

(2)模仿VOC的格式建立相应的文件夹,执行,

请拜访原文:YOLO-V2总结篇   


YOLO v2之总结篇(linux+windows)

从下图可以看出,YOLOv2不管是速度还是精度都超过了SSD300,和YOLOv1相比,确实有很大的性能的提升。这名字也起的darknet,就跟黑魔法一样,是那么的奏效,不得不佩服老外的起名啊。 ...
  • qq_14845119
  • qq_14845119
  • 2016年12月12日 21:51
  • 28479

Win10+YoloV2环境配置

环境: 系统:win10 GPU:GTX960 cuda:8.0 cudnn: opencv:2.4.13 vs2015 一、安装cuda8.0  下载地址:https://developer.nv...
  • LHHopencv
  • LHHopencv
  • 2017年08月02日 13:10
  • 2392

DNN:windows使用 YOLO V1,V2

一个yolo,然后进入yolo-windows-master\build\darknet\下面,用vs2013直接打开darknet.sln,选择,x64版本,只要配置OpenCV和pthreads就...
  • wishchin
  • wishchin
  • 2017年09月05日 13:34
  • 824

在Windows下搭建YOLO v2开发环境

# Yolo-Windows v2 1. [How to use](#how-to-use) 2. [How to compile](#how-to-compile) 3. [How to trai...
  • ali_dongdong
  • ali_dongdong
  • 2017年04月17日 08:40
  • 4958

YOLO windows 配置

作者配置时的环境visual studio 2013 显卡 GTX 960M CUDA 7.5 Opencv 2.4.9 pthreadpthread 下载地址YOLO官网[http://pj...
  • u012235274
  • u012235274
  • 2016年04月27日 20:31
  • 11369

YOLOv2在Windows下的配置方法

Windows下的YOLOv2配置研究深度学习数月,从普通的CNN(mnist、cifar10),到进阶的Fast RCNN、Faster RCNN,到现在的YOLO、YOLO2,被AI界大神们的思维...
  • desert961467
  • desert961467
  • 2017年10月11日 10:28
  • 540

Yolo的搭建和在Windows下封装以及工程应用

概述   最近一直在研究基于深度学习的目标检测这一块,之前用过faster_rcnn和R-FCN,相对来说检测的准确率应该是可以的,但是实际的检测速度还是很不理想的,考虑实际工程的需求,所以后来想着...
  • xjz18298268521
  • xjz18298268521
  • 2017年03月13日 17:25
  • 5636

YOLO2+windows+gpu训练配置

  • 2017年07月19日 08:53
  • 1.61MB
  • 下载

yolo2 windows下,跑demo和fine-tuning

目前已经可以用yolo2, 跑demo:测试图片,也可以测试一段视频。 准备开始训练,fine-tuning,不过现在代码还有点错误,先记录下网上其他资料,等完全弄好再把博客完善下。 其他资料...
  • chenzhi1992
  • chenzhi1992
  • 2016年12月01日 20:48
  • 2864

yolov2-cpu检测90ms每帧之tinier模型(3.5M)应用

众所周知,yolov2是个很好的深度学习框架,是检测算法的得力助手。但是yolov2在windows下cpu的测试速度不尽如人意,原作者给出的模型有多种,如tiny-yolo,以及full-yolo。...
  • samylee
  • samylee
  • 2017年06月08日 20:49
  • 3943
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:DNN:windows使用 YOLO V1,V2
举报原因:
原因补充:

(最多只允许输入30个字)