关闭

三维重建面试3:如何形象地理解四元数

各种位姿变换都有其特定的缺陷,使用旋转矩阵在变换角为0或者pi/2时会出现病态矩阵,使用欧拉角容易出现万向锁,使用四元数可以降低位姿变换-旋转平移运算的计算量。 比如:两个正交旋转矩阵的复合需要27次乘法和18次加法,而通过四元数的形式只需要16次乘法和12次加法,降低1/3的计算量。但是四元数的不可交换性,往往导致令人意外的结果。...
阅读(214) 评论(0)

人工机器:NDC-谷歌机器翻译破世界纪录,仅用Attention模型,无需CNN和RNN

NTM的成熟体DNC竟然达到了这种能力,不知道进化成完全体会是什么样子。竟然在机器翻译的准确率上超过了已经公布的所有模型,不愧是最接近现阶段最接近图灵机的有限图灵机。 在数码宝贝中,我最喜欢的是阿和的加布兽进化的究极体数码宝贝——钢铁加鲁鲁,其使用的武器绝对冷冻气——就洋溢着极其欠揍的高冷味道。...
阅读(499) 评论(1)

Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

“祖母细胞”(grandmother cell),这种学说的核心观点认为人脑中存在一些“超级神经元”,单独一个这样的神经元就能对一些复杂的目标(如人脸)有特异性反应,而不需依靠大量神经元相互协同工作。 还原论(reductionism)是个哲学概念,强调分析一个复杂事物时必须首先将其分解成相对简单的部件,然后逐一进行分析再组合。 具体到对人脑视神经机制的研究,还原论的代表是20世纪70年代开始兴起的Marr视觉理论框架[5],整体论的代表是20世纪20年代出现的Gestalt理论[6]。...
阅读(249) 评论(0)

三维重建面试2: 地图构建-三角测量

在三维重建过程中,如果使用了IMU-惯导系统,一般可以得到一个大致可信的相机位姿转换。基于IMU短时间可信的原则,重建问题着重在地图的构建问题,即根据图像来获取点集的空间位置(六自由度),重要的一点的是获取深度信息。...
阅读(314) 评论(0)

三维重建面试1-位姿追踪:单应矩阵、本质矩阵和基本矩阵

本文所写与原文相距甚远,如有疑问,请拜访原文。 原文链接:单应矩阵Homograph matrix、本质矩阵Fundamental matrix、基本矩阵essential matrix 根据图像来估计位姿,一般称之为位姿追踪。非退化状态下可是根据匹配点求解Essential Matrix ,退化状态下课根据匹配点来求解 Homograph Matrix。用于实时计算位姿。...
阅读(643) 评论(0)

Caffe2:ubuntuKylin17.04使用Caffe2.LSTM

ubuntuKylin17.04使用Caffe2 安装测试成功。 一早发现caffe2的较成熟的release版发布,那么深度学习平台在之后一段时间也是会出现其与tensorflow相互竞争的局面。 从打开这个caffe2的官网就会发现,有了Facebook的支持,连界面也好看多了。不过再仔细看看,觉得又和tensorflow有一丝像,从内到外。 类似于TensorFlow的构建,Caffe2默认包含了LSTM单元,即可以基于Caffe构建LSTM网络。...
阅读(786) 评论(0)

三维重建面试0:*SLAM滤波方法的串联综述

此文分析了多个基于滤波方法的SLAM算法原理联系。从KF到EKF UKF PF 到BA方法。...
阅读(360) 评论(0)

cannot find Toolkit in /usr/local/cuda-8.0

使用apt-get进行安装 sudo apt install nvidia-cuda-toolkit...
阅读(795) 评论(0)

ROS:ubuntuKylin17.04-Ros使用OrbSLAM2

忙于图像处理和DCNN,很长时间不使用ROS,重新安装系统后,再次使用ORB-SLAM2(ROS)进行三维重建和实时追踪的演示。 参考以前的文章:ROS:ubuntu-Ros使用OrbSLAM...
阅读(246) 评论(0)

ROS:使用ubuntuKylin17.04安装ROS赤xi龟

使用ubuntuKylin17.04可以成功的安装ROS赤xi龟。...
阅读(1193) 评论(0)

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题...
阅读(346) 评论(0)

Yoga710笔记本Win10和Ubuntu系统共存

联想yoga710默认安装了win10系统,且使用EFI分区格式,安装Ubuntu不是一般的困难,经公司小哥的帮助下,几次终于完成了Ubuntu和Win10 共存。...
阅读(787) 评论(0)

人工机器:作为归纳系统的深度学习

深度学习为深度神经网络机器学习。07年最先引起注目的是DNN,在语音识别上有突出的表现;深度CNN在机器视觉领域的超常表现引领模式识别领域科学界和工业界的潮流;RNN对时序和变长数据的处理优势促使语音识别和视频分析又有较大发展;此外可应用于增强学习的新的深度网络形式可以完成游戏策略训练过程,提供端到端的 模型训练方式:DeepMind用ReinforcementLearning玩游戏 。...
阅读(324) 评论(0)

Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较

Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差,场景可扩展性不强。 另外通过NDP特征池是可以重建出原图的,也就是说特征池包含了原图片中的所有信息...
阅读(1120) 评论(0)

OpenCV: OpenCV人脸检测框可信度排序

使用OpenCV进行人脸识别时,使用 casecade.detectMultiScale 函数,可输出每个检测框的置信度...
阅读(414) 评论(0)

VS常用快捷键

跳转到指定的某一行 方法1:组合键“Ctrl+G”;...
阅读(167) 评论(0)

OpenCV:Adaboost训练时数据扩增

更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。...
阅读(263) 评论(0)

SiftGPU:编译SiftGPU出现问题-无法解析的外部符号 glutInit

SiftGPU的原始库可以编译通过。但不能使用,在使用时引出了一连串96个编译错误。...
阅读(511) 评论(1)

三维重建:闭环检测

还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 三维重建过程中,滤波方法可以看做是一种追踪方法。EM方法的长期使用造成在相对整个世界坐标系中累计误差的指数级增长。若是检测到可信的闭环,闭环之内的标记帧的位姿可以全部进行误差矫正,重新调整在世界坐标系中的位置。...
阅读(799) 评论(0)

三维重建:SFM中BA的并行化

借鉴于运动中重建,把所有的误差平均到每一个选定的关键帧里,对于帧数较多时,可以使用数据并行化。...
阅读(358) 评论(0)
591条 共30页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:830714次
    • 积分:11575
    • 等级:
    • 排名:第1417名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条