关闭

GrepWin:Win7下的文本替换工具

工作环境退回到Win7之后,内容查找功能非常不给力,推荐一个文本内容查找工具grepWin。...
阅读(868) 评论(0)

Morse理论:拓扑不变性特征匹配原理

微分拓扑的一个重要分支。通常是指两部分内容:一部分是微分流形上可微函数的莫尔斯理论,即临界点理论;另一部分是变分问题的莫尔斯理论,即大范围变分法。...
阅读(481) 评论(0)

PAC学习理论:机器学习那些事

机器学习是有别于专家系统(基于知识/规则)的一种模式识别方法,与专家系统的构建方法不同,但目的相同。本文分析了一众机器学习方法,并给出了一些机器学习概念的通俗解释。...
阅读(1983) 评论(0)

图方法:二分无向图的联通子图查找

二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。...
阅读(300) 评论(0)

基于神经网络的混合计算(DNC)-Hybrid computing using a NN with dynamic external memory

常规计算机算法能够处理复杂的大型数据结构,比如英特网和社交网络,但必须经过人类“手动”编程。神经网络则能通过示例学习如何识别复杂模式,但很难解析或组织复杂的数据结构。Alex Graves、Greg Wayne及同事,开发了一种名叫可微分神经计算机(DNC)的混合型学习机器,它由能从外部存储结构(类似常规计算机的随机存取存储器)读写数据的神经网络组成。因此,DNC能在没有先验知识和专门编程的条件下,仅仅通过试错方法来学习规划伦敦地铁路线,还能完成方块拼图游戏。...
阅读(881) 评论(0)

人工机器:Neural Turing Machines(NTM)

NTM通过融合一个注意力处理过程进行交互的外部存储器(external memory),来增强神经网络的能力。新系统等同于图灵机或者冯·诺依曼体系,但每个组成部分都是端到端可微的,因此可以使用梯度下降进行高效训练。初步的结果显示神经网络图灵机能够从输入和输出样本中推理出(infer)简单的算法,如复制、排序和回忆。...
阅读(1065) 评论(2)

支持向量机的近邻理解:图像二分类为例(3)

在图像识别领域,灰度图像被称为传说中的2维张量,任意图像为由所有二类图像构成的这个二维张量空间内的一个点。由人类专家完成图像属性归纳,把二维张量空间图像的特征显式的归结为一维张量空间的n维向量上,被称为特征提取。一般提取的特征并不一定能在n维向量空间中线性可分,这就需要再由模型进行一次映射,把向量样本转换到新的空间实现线性可分。...
阅读(474) 评论(0)

支持向量机的近邻理解:图像二分类为例(2)

从可见样本归纳出假设空间,与事实空间一般不会相同,这就意味着泛化是个概率性的问题。在图1中的例子中可以看出,严格来说,符合专家直觉特征提取过程并不符合甚至可视样本空间的要求,二维线性不可分映射到三维向量空间线性可分是对特征提取的弥补。 一切直觉可计算的,便是递归可计算的。既然符合直觉的特征提取看似永远不能满足仅仅是可见样本空间的要求,就使用一劳永逸的方案,使用模型来解决特征空间的可描述性。...
阅读(727) 评论(0)

支持向量机的近邻理解:图像二分类为例(1)

一个古老的哲学原理:世界并不是以小包的形式来到我们面前,除非遍历整个空间,任何训练得到的模型都是过拟合的。面对学习问题,首先面对这一个空间的认知问题,对空间结构的认识来自于接口,而全面的认识来自于遍历。 在认识一个未知空间之前,一般的套路是由接口获取的数据对这个空间进行简单假设,迭代修改理解规则,最后到遍历。...
阅读(495) 评论(0)

boost::mutex::scoped_lock

在三维重建过程中,世界地图 Map &world作为唯一 访问/更新 对象,可以使用boost::mutex::scoped_lock 。 使用boost进行线程管理简单使用boost::mutex 。 mutex对象本身并不知道它代表什么,它仅仅是被多个消费者线程使用的资源访问的锁定解锁标志。...
阅读(2886) 评论(0)

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。...
阅读(1433) 评论(0)

直观判断图像是否可以被实时处理

直观判断给出了实时性的提示,那怎样判断呢? 以下方法(现在的处理能力所达到的):         对于识别,是否可以在第一眼的时间完成工作?若直观上认为可以完成,则图片对于算法是可以实时处理的;若需要进一步查看才能判别,则图片对于算法是不能实时处理的。         识别图片中的老虎?         图片分析:         和智商真的没有关系,树上还有一只猎豹呢!...
阅读(633) 评论(0)

职业:图像处理入门教程

1 通识课程基础          高等数学的基础概念是入门基础,数学知识不言其多。          可以参考的基础书籍有《微积分》《数学/泛函分析》《概率论与数理逻辑》 ,很多图像学的基本概念可以从这三本书上找到。          偏计算机科学的《 离散数学 》,这是计算机科学的基础数学。          偏控制理论的《非线性动力学》,复杂度/非线性 的提升导致不可控性。...
阅读(780) 评论(0)

Caffe+Kubuntu16.04_X64+CUDA 8.0配置

前言:         经过尝试过几次Caffe,theano,MxNet之后,很长时间没有进行caffe的更新,此次在Ubuntu16.04下安装Caffe,折腾了一天时间,终于安装成功。        既然使用了最新版本,必然使用最新版本的CUDA,且只有CUDA8.0给了ubuntu16.04支持。...
阅读(3250) 评论(0)

Photoshop显示RGB值问题

Bmp与JPEG格式的不同之处在哪里?         使用OpenCV读写图像,然后由Photoshop显示时候结果并不相同,使用jpg格式的图像灰度值明显大于bmp格式,但jpg格式的显示信息是错误的。         不知道 什么解........
阅读(503) 评论(0)

统计:mAP的中文意思

区别在于Precision,Recall, F-score, MAP主要用于信息检索,而ROC曲线及其度量指标AUC主要用于分类和识别,ROC的详细介绍见上面的blog,这里的Precision、Recall和上篇blog的计算结果其实是一样的,只是这里从检索的角度进行理解。...
阅读(569) 评论(0)

三维重建:多点透视cvSolvePNP的替代函数(Code)

在调试JNI程序时,所有的Shell都已经加载完成,而唯一真正核心的cv::SolvePnP却不能在JNI里面获得通行证,经过反复测试都不能运行,因此只能忍痛舍弃,自行编写一个具有相似功能的函数对其进行替代。 原函数是这样的:void rec3D::reconstruct3D(const vector& image_points, Mat& rvecs.......
阅读(1239) 评论(2)

SLAM:ORB-SLAM 位姿优化描述

因为摄像机标定(camera calibration)和追踪(tracking)的精度不够。摄像机标定的误差会体现在重建中(比如三角法重建时),而追踪的误差则会体现在不同关键帧之间的位姿中,和重建中(单目)。误差的不断累积会导致后面帧的位姿离实际位姿越来越远,最终会限制系统整体的精度。...
阅读(1693) 评论(0)

MxNet : use the MxNet windows versioin

The MxNet needs  the following thirdparties: 1. lapack      complie lapack-3.6.1:      download the lapack-3.6.1 sourcecode: http://www.netlib.org/lapack/#_lapack_for_windows          1.2....
阅读(569) 评论(0)

Python 遍历目录

代码: import os def scanfile(path): filelist = os.listdir(path) allfile = [] for filename in filelist: filepath = os.path.join(path,filename) if os.path.i...
阅读(666) 评论(0)
591条 共30页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:833340次
    • 积分:11607
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条