关闭
当前搜索:

图像局部显著性—点特征(FREAK)

参考文章:Freak特征提取算法  圆形区域分割...
阅读(457) 评论(0)

图像局部显著性—点特征(SURF)

2006年的SURF(2006年的ECCV);SURF算法是对SIFT算法加强版,同时加速的具有鲁棒性的特征。第二、标准的SURF算子比SIFT算子快好几倍,并且在多幅图片下具有更好的鲁棒性。SURF最大的特征在于采用了harr特征以及积分图像integral image的概念,这大大加快了程序的运行速度。...
阅读(1215) 评论(0)

图像的全局特征--用于目标检测

图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、LBP特征等。...
阅读(1078) 评论(0)

图像局部显著性—点特征(GLOH)

2005年MIko等人提出的SIFT的变子,改进为关键点周围的区间划分,由田字格划分修改为 八象限圆格划分;在很大的一个训练集上训练得到PCA模型,再将272维直方图映射到一个128维的描述子。在整体的测试中,比SIFT性能有显著的提高。...
阅读(749) 评论(0)

OpenCV:OpenCV图像旋转的代码

OpenCV图像旋转的代码 cv::transpose( bfM, bfM ) 前提:使用两个矩阵Mat型进行下标操作是不行的,耗费的时间太长了。直接使用两个指针对拷贝才是王道。不知道和OpenCV比较效果如何。...
阅读(327) 评论(0)

SLAM:飞行机器人的参数解析-分类

在水电站存在的山区,公路运输效率极低,盘山公路绕行消耗大量时间,使用飞行机器人进行运输是合适的选择。...
阅读(446) 评论(0)

SLAM: Structure From Motion-移动中三维场景重建

wiki链接:https://en.wikipedia.org/wiki/Structure_from_motion 三维场景重建因为尺度和粒度不同,需要引入不同的方法和方法论...
阅读(565) 评论(0)

人工机器:TM、VNM和NTM的内存机制

从图灵机的原始模型分析,神经图灵机包含两个基本组成部分:神经网络控制器和记忆库,控制器通过输入输出向量和外界交互。不同于标准神经网络的是,控制器还会使用选择性的读写操作和记忆矩阵进行交互。类比于图灵机,我们将网络的参数化这些操作的输出称为“读头”。输入向量和网络结构影响注意力的聚焦,决定寻址位置。...
阅读(344) 评论(0)

GrepWin:Win7下的文本替换工具

工作环境退回到Win7之后,内容查找功能非常不给力,推荐一个文本内容查找工具grepWin。...
阅读(1155) 评论(0)

Morse理论:拓扑不变性特征匹配原理

微分拓扑的一个重要分支。通常是指两部分内容:一部分是微分流形上可微函数的莫尔斯理论,即临界点理论;另一部分是变分问题的莫尔斯理论,即大范围变分法。...
阅读(561) 评论(0)

PAC学习理论:机器学习那些事

机器学习是有别于专家系统(基于知识/规则)的一种模式识别方法,与专家系统的构建方法不同,但目的相同。本文分析了一众机器学习方法,并给出了一些机器学习概念的通俗解释。...
阅读(2619) 评论(0)

图方法:二分无向图的联通子图查找

二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。...
阅读(371) 评论(0)

基于神经网络的混合计算(DNC)-Hybrid computing using a NN with dynamic external memory

常规计算机算法能够处理复杂的大型数据结构,比如英特网和社交网络,但必须经过人类“手动”编程。神经网络则能通过示例学习如何识别复杂模式,但很难解析或组织复杂的数据结构。Alex Graves、Greg Wayne及同事,开发了一种名叫可微分神经计算机(DNC)的混合型学习机器,它由能从外部存储结构(类似常规计算机的随机存取存储器)读写数据的神经网络组成。因此,DNC能在没有先验知识和专门编程的条件下,仅仅通过试错方法来学习规划伦敦地铁路线,还能完成方块拼图游戏。...
阅读(1034) 评论(0)

人工机器:Neural Turing Machines(NTM)

NTM通过融合一个注意力处理过程进行交互的外部存储器(external memory),来增强神经网络的能力。新系统等同于图灵机或者冯·诺依曼体系,但每个组成部分都是端到端可微的,因此可以使用梯度下降进行高效训练。初步的结果显示神经网络图灵机能够从输入和输出样本中推理出(infer)简单的算法,如复制、排序和回忆。...
阅读(1327) 评论(2)

支持向量机的近邻理解:图像二分类为例(3)

在图像识别领域,灰度图像被称为传说中的2维张量,任意图像为由所有二类图像构成的这个二维张量空间内的一个点。由人类专家完成图像属性归纳,把二维张量空间图像的特征显式的归结为一维张量空间的n维向量上,被称为特征提取。一般提取的特征并不一定能在n维向量空间中线性可分,这就需要再由模型进行一次映射,把向量样本转换到新的空间实现线性可分。...
阅读(514) 评论(0)

支持向量机的近邻理解:图像二分类为例(2)

从可见样本归纳出假设空间,与事实空间一般不会相同,这就意味着泛化是个概率性的问题。在图1中的例子中可以看出,严格来说,符合专家直觉特征提取过程并不符合甚至可视样本空间的要求,二维线性不可分映射到三维向量空间线性可分是对特征提取的弥补。 一切直觉可计算的,便是递归可计算的。既然符合直觉的特征提取看似永远不能满足仅仅是可见样本空间的要求,就使用一劳永逸的方案,使用模型来解决特征空间的可描述性。...
阅读(785) 评论(0)

支持向量机的近邻理解:图像二分类为例(1)

一个古老的哲学原理:世界并不是以小包的形式来到我们面前,除非遍历整个空间,任何训练得到的模型都是过拟合的。面对学习问题,首先面对这一个空间的认知问题,对空间结构的认识来自于接口,而全面的认识来自于遍历。 在认识一个未知空间之前,一般的套路是由接口获取的数据对这个空间进行简单假设,迭代修改理解规则,最后到遍历。...
阅读(594) 评论(0)

boost::mutex::scoped_lock

在三维重建过程中,世界地图 Map &world作为唯一 访问/更新 对象,可以使用boost::mutex::scoped_lock 。 使用boost进行线程管理简单使用boost::mutex 。 mutex对象本身并不知道它代表什么,它仅仅是被多个消费者线程使用的资源访问的锁定解锁标志。...
阅读(3519) 评论(0)

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。...
阅读(2104) 评论(0)

直观判断图像是否可以被实时处理

直观判断给出了实时性的提示,那怎样判断呢? 以下方法(现在的处理能力所达到的):         对于识别,是否可以在第一眼的时间完成工作?若直观上认为可以完成,则图片对于算法是可以实时处理的;若需要进一步查看才能判别,则图片对于算法是不能实时处理的。         识别图片中的老虎?         图片分析:         和智商真的没有关系,树上还有一只猎豹呢!...
阅读(664) 评论(0)
619条 共31页首页 上一页 ... 6 7 8 9 10 ... 下一页 尾页
    个人资料
    • 访问:950502次
    • 积分:12877
    • 等级:
    • 排名:第1148名
    • 原创:296篇
    • 转载:294篇
    • 译文:29篇
    • 评论:195条